
• UNISYS A Series 
Disk Subsystem 
Administration and 
Operations 
Guide 

Release 3.9.0 

Priced Item 

September 1991 

US America 
8600 0668-000 



• UNISYS A Series 
Disk Subsystem 
Administration and 
Operations 
Guide 

Copyright <0 1991 Unisys Corporation 
All rights reserved. 
Unisys is a registered trademark of Unisys Corporation. 

Release 3.9.0 

Priced Item 

September 1991 

US America 
8600 0668-000 



The names, places, and/or events used in this publication are not intended to correspond to any 
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the 
names, places, and/or events with the names of any individual, living or otherwise, or that of any 
group or association is purely coincidental and unintentional. 

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and 
related material disclosed herein are only furnished pursuant and subject to the terms and 
conditions of a duly executed Program Product License or Agreement to purchase or lease 
equipment. The only warranties made by Unisys, if any, with respect to the products described in 
this document are set forth in such License or Agreement. Unisys cannot accept any financial or 
other responsibility that may be the result of your use of the information in this document or 
software material, including direct, indirect, special or consequential damages. 

You should be very careful to ensure that the use of this information and/or software material 
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used. 

The information contained herein is subject to change without notice. Revisions may be issued to 
advise of such changes and/or additions. 

Correspondence regarding this publication may be forwarded using the Product Information card at 
the back of the manual, or may be addressed directly to Unisys, Product Information, 25725 
Jeronimo Road, Mission Viejo, CA 92691. 



Page Status 

Page Issue 

iii -000 
iv Blank 
v through xvii -000 
xviii Blank 
xix -000 
xx Blank 
1-1 through 1-18 -000 
2-1 through 2-11 -000 
2-12 Blank 
3-1 through 3-12 -000 
4-1 through 4-25 -000 
4-26 Blank 
5-1 through 5-17 -000 
5-18 Blank 
6-1 through 6-3 -000 
6-4 Blank 
7-1 through 7-13 -000 
7-14 Blank 
8-1 through 8-10 -000 
9-1 th rough 9-9 -000 
9-10 Blank 
10-1 through 10-9 -000 
10-10 Blank 
11-1 through 11-5 -000 
11-6 Blank 
12-1 through-12-13 -000 
12-14 Blank 
A-I through A-5 -000 
A-6 Blank 
Glossary-l through 17 -000 
Glossary-18 Blank 
Bibliography-1 -000 
Bibl iography-2 Blank 
Index-1 through 10 -000 

Unisys uses an II-digit document numbering system. The suffix of the document 
/ number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x) 

designates a revision level; the second digit (y) designates an update level. For example, 
the first release of a document has a suffix of -000. A suffix of -130 designates the 
third update to revision 1. The third digit (z) is used to indicate an errata for a particular 
level and is not reflected in the page status summary.· 

8600 0668-000 iii 



iv 8600 0668-000 



About This Guide 

Purpose 
This guide is intended to provide a reference to the disk subsystem that runs on A Series 
systems. Included in the discussions are 

• Explanations of the basic concepts, structure, and organization of the disk subsystem 
on Unisys A Series systems 

Scope 

• Descriptions of how to plan, install, and use the disk subsystem 

• Descriptions of various related systems and subsystems, including the archive, 
catalog, and disk resource control (DRC) systems. 

This guide emphasizes the software related to the disk subsystem on A Series systems. 
Discussion of hardware is limited to general concepts that are helpful in understanding 
the operation of the software, and cases where differences among Unisys A Series 
systems affect the way that the software manages the disk subsystem. 

The disk subsystem software is basically the same for all A Series systems. 

Audience 
This guide is intended for use by operations center managers, senior operators, and 
system programmers to aid them in setting up the disk subsystem and operating it 
efficiently. 

The guide is designed to be used by both new and experienced users of Unisys A Series 
systems. 

Prereq u isites 
Users of this guide should have experience in operating Unisys A Series systems and 
should be familiar with system commands and Work Flow Language (WFL) statements. 

8600 0668-000 v 



About This Guide 

How to Use This Guide 
The subject matter in this guide is organized by topic. If you are not familiar with disk 
subsystem concepts, you should read each section in the order it is presented. If you are 
familiar with disk subsystem concepts, you can refer to the discussions in the order that 
you need them. 

The sections titled "Disk Subsystem Concepts" and "Disk Initialization and Operation" 
explain the concepts, structure, and operation of the disk subsystem. If you are not 
familiar with Unisys A Series systems, these sections introduce you to the subsystem. If 
you are an experienced user of A Series systems, these sections can help familiarize you 
with the terminology used in the guide. 

The sections titled "Planning and Installation," "Safety Mechanisms," "Disk Resource 
Control System," and "Recovery" provide an overview of how to plan, install, and use 
the disk subsystem. 

The sections titled "Volume Library and Volume Directory," "Archiving Disk Files," 
"Cataloging," and "Comparing the Archive and Catalog Subsystems" discuss subsystems 
that enable you to backup and track files more efficiently. 

The sections titled "Mirrored Disk Feature" and "Memory Disk Feature" describe these 
features and provide guidelines for their implementation and use. 

Any of the sections in this guide can be read independently of the others. Most 
procedures and operations are explained in general terms. The guide often does not 
explain the formal syntax of system commands and WFL statements. If you need 
complete syntax information, refer to the A Series System Commands Operations 
Reference Manual and the A Series Work Flow Language (WFL) Programming 
Reference Manual. The online help text for the Menu-Assisted Resource Control 
(MARC) interface also provides information about some subjects covered in this guide. 

Organization 

vi 

The individual sections and the appendix are described in the following outline. In 
addition, a glossary, a bibliography, and an index appear at the end of this guide. 

Section 1. Disk Subsystem Concepts 

This section explains the components of the disk subsystem, the structure and functions 
of disks and disk packs, disk families, disk files, and disk file access. This section is 
intended for readers who are not familiar with disk concepts or Unisys A Series systems. 

Section 2. Disk Initialization and Operation 

This section explains how disks are prepared for use and how the disk subsystem is 
operated. This section expands upon the concepts presented in the previous section and 
includes the following topics: . preparing a disk for use, identifying the different types of 
disks used on Unisys A Series systems, creating multidisk families, identifying online 

8600 0668--000 



About This Guide 

and offline disks, releasing a disk from system use, saving disk units, and using system 
commands. 

Section 3. Volume Library and Volume Directory 

This section describes optional, independent subsystems that enable you to track the 
status of tape and disk volumes. Topics include tape security and how you can use it, 
maintenance of volumed tape and disk media, and the LISTVOLUME utility. 

Section 4. Archiving Disk Files 

This section describes the archive subsystem and its commands. Included in the 
discussion are explanations of the AUTORESTORE feature, the WFL ARCHIVE 
statements, and the archive file selection processes. Modification of the selector 
procedure in the standard archive support library is also discussed. 

Section 5. Cataloging 

This section explains the system function cataloging, which keeps track of backup copies 
of files in the system. Topics covered include how cataloging works, how cataloging 
affects system performance, how to set up and operate a cataloging system, how to 
rebuild a catalog, how to make and use backup copies of the catalog file, and how to 
replace a damaged disk on a cataloging system. 

Section 6. Comparing the Archive and Catalog Subsystems 

This section sununarizes the differences and similarities that exist between the archive 
and catalog subsystems. 

Section 7. Planning and Installati<?n 

This section provides system file requirements. It explains how to allocate files for 
efficient system performance and ease of recovery from system problems. It also 
describes techniques for the startup of the system, and discusses disk file headers. This 
section can be used when you first install a system or when you want to improve the 
performance of a system that is already operating. 

Section 8. Safety Mechanisms 

This section explains how to duplicate vital system files such as directories. It also 
describes how to make alternate haIt/load families. 

Section 9. Disk Resource Control System 

This section explains what the DRC system does, and how to use it. 

8600 0668-000 vii 



About This Guide 

Section 10. Mirrored Disk Feature 

This section explains the benefits, requirements, and options of mirrored disks. It also 
explains how to initiate the mirrored disk option, how to move mirrored sets within or 
between systems, and how to deallocate mirrored disks. 

Section 11. Memory Disk Feature 

This section explains how to create, initiate, and recover a memory disk and provides 
operational restrictions and considerations. It also explains some system commands. 

Section 12. Recovery 

This section explains how to correct problems caused by a damaged or destroyed disk, 
a faulty disk drive, disk I/O errors, directory errors, or corrupted or missing archive 
directory records. 

Appendix A. Layout of Archive Directory Records 

This appendix provides examples of archive directory records and describes the 
characteristics they share. 

Related Product Information 

viii 

A Series CANDE Operations Reference Manual (form. 8600 1500) 

This manual describes how CANDE operates to allow generalized file preparation and 
updating in an interactive, terminal-oriented environment. This manual is written for a 
wide range of computer users who work with text and program files. 

A Series DMS11 Utilities Operations Guide (form 8600 0759) 

This guide describes how to maintain relationships between data elements in a DMSII 
database. This guide is written for database administrators and programmers who are 
responsible for database integrity and recovery. 

A Series File Attributes Programming Reference Manual (form 8600 0064). 
Formerly the A Series 1/0 Subsystem Programming Reference Manual 

This manual contains information about each file attribute and each direct I/O buffer 
attribute. The manual is written for programmers and operations personnel who need 
to understand the functionality of a given attribute. The A Senes I/O Subsystem 
Programming Guide is a companion manual. 

A Series GETSTATUS/SETSTATUS Programming Reference Manual 
(form 8600 0346) 

This manual explains how to use the various GETSTATUS and SETSTATUS calls 
used in the DCALGOL programming language. This manual is written for experienced 
ALGOL programmers who are involved with data communications. 

8600 0668-000 



About This Guide 

A Series I/O Subsystem Programming Guide (form 8600 0056). Formerly the 
A Series I/O Subsystem Programming Reference Manual 

This guide contains information about how to program for various types of peripheral 
files and how to program for interprocess communication, using port files. This guide is 
written for programmers who need to understand how to describe the characteristics of 
a file in a program. The A Series File Attributes Programming Reference Manual is a 
companion manual. 

A Series Security Administration Guide (form 8600 0973) 

This guide describes systems-level security features and suggests how to use them. It 
provides administrators with the information necessary to set and implement effective 
security policy. This guide is written for system administrators, security administrators, 
and those responsible for establishing and implementing security policy. 

A Series System Commands Operations Reference Manual (form 8600 0395) 

This manual gives a complete description of the system commands used to control 
system resources and work flow. This manual is written for systems operators and 
administrators. 

A Series System Configuration Guide (form 8600 0445) 

This guide describes how to organize a complex computer system into different hardware 
configurations. It also describes the steps required to dynamically change the system 
from one configuration to another. This guide is written for experienced system 
administrators and system operators. 

A Series System Messages Support Reference Manual (form 8600 0429) 

This manual presents operating system error messages and explains the most likely 
cause of each error and the most effective response to each message. This manual 
is written for operators and programmers responsible for the operation of A Series 
systems, and for the resolution of error conditions on those systems. 

A Series System Operations Guide (form. 8600 0387) 

This guide describes the basic concepts and procedures required to operate Micro A 
through A 6 systems and, more generally, all A Series systems. This guide is written for 
A Series operators, especially those with little or no experience. 

A Series System Software Support Reference Manual (form. 8600 0478) 

This manual describes a number of facilities used for system monitoring and debugging, 
including BARS, DUMP ANALYZER, LOGANALYZER, and LOGGER. It also describes 
the format of the SUMLOG file. This manual is written for system support personnel 
and operators. 

A Series System Software Utilities Operations Reference Manual 
(form 8600 0460) 

This manual provides information on the system utilities, such as DCSTATUS, 
FILE COPY, and DUMP ALL. This manual is written for applications programmers and 
operators. 

8600 0668-000 ix 



About This Guide 

x 

A Series Task Attributes Programming Reference Manual (form 8600 0502). 
Formerly the A Series Work Flow Administration and Programming Guide 

This manual describes all the task attributes available on A Series systems. It also 
gives examples of statements for reading and assigning task attributes in various 
programming ~guages. The A Series Task Management Programming Guide is a 
companion manual. 

A Series Task Management Programming Guide (form 8600 0494). Formerly 
the A Series Work Flow Administration and Programming Guide 

This guide explains how to initiate, monitor, and control processes on an A Series system. 
It describes process structures and process family relationships, introduces the uses of 
many task attributes, and gives an overview of interprocess communication techniques. 
The A Series Task Attributes Programming Reference Manual is a companion manual. 

A Series Work Flow Language (WFL) Programming Reference Manual 
(form 8600 1047) 

This manual presents the complete syntax and semantics of WFL. WFL is used to 
construct jobs that compile or run programs written i:.i:l other languages and that perform 
library maintenance such as copying files. This manual is written for individuals who 
have some experience with programming in a block-structured language such as ALGOL 
and who know how to create and edit files using CANDE or the Editor. 

. 8600 0668-000 



Contents 

About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Section 1. Disk Subsystem Concepts 

Disk Subsystem Components. . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Disks and Disk Packs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
The Structure of Data on Disks ........................ 1-2 
Families and Multidisk Families j • • • • • • • • • • • • • • • • • • • • • • • 1-5 
Disk Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 

File Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 
Creating a New Disk File with Fixed-Length 

Records. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 
Using the AREAS Attribute. . . . . . . . . . . . . . . . 1-8 
Opening the File. . . . . . . . . . . . . . . . . . . . . . . 1-8 
Accessing a Permanent File . . . . . . . . . . . . . . . 1-9 

File Generations on Noncataloging Systems . . . . . . . . 1-9 
Distinguishing Generations with Unique File 

Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
Distinguishing Generations with the CYCLE and 

VERSION Attributes. . . . . . . . . . . . . . . . . . . 1-9 
Resident and Nonresident Files. . . . . . . . . . . . . . . . . 1-10 
Temporary and Permanent Files, . . . . . . . . . . . . . . . . 1-11 

Disk File Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 
Pack Access Structure Table (PAST). . . . . . . . . . . . . . 1-13 
File Access Structure Table (FAST) .............. 1-13 
Process of Accessing Disk Files. . . . . . . . . . . . . . . . . 1-15 
Archive Directories and the Archive Access Structure 

Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 
Family Rebuilds and Archive Rebuilds . . . . . . . . . . . . 1-17 

Family Rebuilds ............. ',' . . . . . . . . 1-17 
Archive Rebuilds. . . . . . . . . . . . . . . . . . . . . . . 1-17 

Local Access Structure Table (LAST) ...... . . . . . . . 1-17 
Available Disk Space. . . . . . . . . . . . . . . . . . . . . . . . 1-18 

Section 2. Disk Initialization and Operation 

Preparing a Disk for Use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
Performing the IVR Operation. . . . . . . . . . . . . . . . . . 2-1 
Using the RC Command to Create a Disk Family. . . . . 2-1 

Identifying the Types of Disks Used on A Series Systems . . . . . . 2-2 
Creating Multidisk Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 
Identifying Online and Offline Disks. . . . . . . . . . . . . . . . . . . . . 2-4 
Releasing a Disk from System Use. . . . . . . . . . . . . . . . . . . . . . 2-4 
Saving Disk Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Using the RES, XD, and SQUASH Commands. . . . . . . . . . . . . . 2-7 

8600 0668-000 xi 



Contents 

Moving Allocated Disk File Areas with the RES and XD 
Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 2-7 

Consolidating Disk Space with the SQUASH Command 2-9 

Section 3. Volume Library and Volume Directory 

Using Tape Security 0 o· 0 00 0 0 0 0 0 0 0 o. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-1 
Volume Library 00 0 0 0 0 0 0 0 0 0 0 0 0000 0 00 0 0 0000 000 000 00' 0 3-2 
How the System Handles Volumed Tapes and Disks 0 0 000 000 0 3-2 

Handling Volumed Tapes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-3 
Genera I Information 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-3 
Example Procedure for Handling Volumed Tapes 0 3-3 

Handling Volumed Disks (Volume Library Only) 0 0 0 0 0 0 3-6 
General Information 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-6 
Example Procedure for Handling Volumed Disks . 3-7 

Using the LlSTVOLUME and LlSTVOLUMELIB Utilities 00 0 0 0 • 0 3-8 
Running the L1STVOLUME Utility 0 • 0 0 0 0 0 0 0 0 0 ••• 0 .3-9 
Running the L1STVOLUMELIB Utility 0 •• 0 •• 0 •• 0 0 • • 3-11 

Section 4. Archiving Disk Files 

Components of the Archive Subsystem 0 •• 0 ••••••• 0 0 • • • • • • 4-1 
AUTORESTORE Task Attribute .... 0 ••• 0 ••• 0 •• 0 • 4-2 
Files and File Searches ............... 0 ••••• 0 4-3 

Using Archive Subsystem and WFL Statements .......... o. • 4-4 
ARCH IVE Backu p Statements 0 0 0 •••••• 0 • • • • • • • • 4-5 

Examples of ARCHIVE Backup Statements 0 • • • • 4-6 
Differences between Differential and Incremental 

Backups .. 0 • 0 •••• 0 ••••••• 0 • 0 ••• 0 • • • 4-7 
ARCHIVE MERGE Statement o. 0 ••• 0 0 0 ••••••• 0 • 4-8 
ARCHIVE PURGE Statement ... 0 •••••• 0 •• 0 • • • • 4-10 
ARCHIVE RESTORE and ARCHIVE RESTOREADD 

Statements ...................... 0 • • • • • • 4-11 
ARCHIVE ROLLOUT Statement. 0 •••••••• 000 • • • • 4-12 

Specifying the SECTORS Option or Using the DRC 
Option .. 0 ••••••• 0 •• 0 ••• 0 •• 0 •• 0 • • • • 4-14 

Examples of ARCHIVE ROLLOUTStatements . 0 0 4-14 
Using Task Variables and Archive Options ... 0 ••••• 0 0 •• 0 •• 0 4-17 
Reviewing or Changing File Information in the Archive Directory 4-18 
Modifying the Archive Support Library ....... 0 • 0 • 0 •• 0 0 • 0 0 4-19 

About Archive File Selection . 0 ••••• 0 0 •••••• 0 0 • 0 4-20 
Selector Procedure and Parameter Values ..... 0 0 • • • 4-21 

CODES Parameter 0 ••• 0 0 0 0 •••••• 0 0 0 • 0 • 0 • 4-21 
SFN Parameter. 0 0 0 0 0 •••••• 0 0 0 0 0 ••• 0 0 0 0 4-22 
DFHINFO Parameter ......... 0 •• 0 0 • 0 •• 0 0 4-22 
ARCREC Parameter ........ 0 0 ••••••• 0 000 4-22 
MEM Parameter ... 0 •• 0 ••••••••• 0 0 • • • • • 4-23 

Selector Procedure and Returned Results 0 0 •••• 0 0 • 0 4-23 
Standard Algorithms in the Selector Procedure . 0 • • • • 4-24 

xii 8600 0668-000 



Contents 

Section 5. Cataloging 

Understanding How a Cataloging System Works . . . . . . . . . . . . 5-1 
Catalog Components ...................... '. . 5-1 
File Generations ...... . . . . . . . . . . . . . . . . . . . . . 5-2 

Characteristics of a New File Generation ...... 5-2 
Keeping Track of File Generations . . . . . . . . . . . 5-3 

When a GENERATION Value Is Not 
Designated. . . . . . . . . . . . . . . . . . . . . 5-3 

When You Designate a GENERATION Value 5-4 
Examples of File Generation Selection. . . . . . . . . . . . 5-5 
Impact of Cataloging on System Performance . . . . . . . 5-10 

Setting Up a Cataloging System. . . . . . . . . . . . . . . . . . . . . . . . 5-10 
Operating a Cataloging System ........................ 5-11 

Entering Files into the Catalog ................. 5-11 
Making Backup Copies of Cataloged Files. . . . . . . . . . 5-11 
Accessing Cataloged Files. . . . . . . . . . . . . . . . . . . . . 5-12 
Removing Catalog Entries. . . . . . . . .. . . . . . . . . . . . 5-13 
Purging Catalog Backup Tapes ................ '. 5-14 

Rebuilding Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 
Creating and Using Backup Copies of the Catalog. . . . . . . . . . . 5-14 

Replacing the Current Catalog. . . . . . . . . . . . . . . . . . 5-15 
Designating a New Catalog Family .............. 5-16 

Replacing a Damaged Volumed Disk. . . . . . . . . . . . . . . . . . . . 5-16 

Section 6. Comparing the Archive and Catalog Subsystems 

Availability and Compatibility Issues .................... 6-1 
File Management. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 6-1 
Effects of Nonresident Files on OPEN Requests and File 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
Responses to the NO FILE Systeni Message. . . . . . . . . . . . . . . 6-3 
Displays of Backup Information and Reports. . . . . . . . . . . . . . . 6-3 
About Volumed Tapes and Disks ....................... 6-3 

Section 7. Planning and Installation 

System File Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
MCP Code File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
System Library and Intrinsic Code Files ... . . . . . . . . 7-2 
Other System Code Files ..................... 7-2 
Overlay Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 
JOBDESC and Job Files ..... ~ . . . . . . . . . . . . . . . . 7-2 
Printer and Punch Backup Files ................ 7-3 
SYSTEM/SUMLOG File ...................... 7-3 
Disk Access Structure File .................... 7-3 

Disk Space Requirements. . . . .. . . . . . . . . . . . 7-3 
Restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 

Archive Directories ......................... 7-4 
SYSTEM/USERDATAFILE File. . . . . . . . . . . . . . . . . . 7-4 

8600 0668-000 xii i 



Contents 

Sort Files. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 
Disk File Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 

Family Substitution . . . . . . . . • . . . . . . . . • . . . . . . . 7-6 
Example of Disk File Allocation. . . . . . . . . . . . . . . . . 7-8 

System Startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
Disk File Headers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 

Understanding Disk File Header Versions. . . . . . . . . . 7-11 
Understanding Family Header Versions. . . . . . . . . . . 7-12 
Converting Family Header Versions . . . . . . . . . . . . . . 7-12 

Halt/Load Unit . . . . . . . . . . . . . . . . . . . . . . . . 7-12 
Catalog Unit ..... ',' . . . . . . . . . . . . . .. . . . . 7-12 
Other Units .......................... 7-12 

Section 8. Safety Mechanisms 

Duplicating Flat Directories. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
Duplicating Archive Directories. . . . . . . . .. . . . . . . . . . . . . . . 8-3 
Restoring Backup Archive Directories. . . . . . . . . . . . . . . . . . . . 8-4 
Duplicating Catalog Directories. . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Duplicating MCP Code Files .. . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Monitoring Directory Duplication .. . . . . . . . . . . . . . . . . . . . . . 8-6 
Comparing Duplication Commands. . . . . . . . . . . . . . . . . . . . . . 8-7 
Making Alternate or Standby Halt/Load Families. . . . . . . . . . . . 8-8 

Using Online Disks ..............•.......... 8-9 
Using Removable Disks Offline. . . . . . . . . . . . . . . . . 8-9 

Section 9. Disk Resource Control System 

DRC System Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
Using the DRC System Command. . . . . . . .. . . . . . . 9-1 
Handling Permanent Files .................... 9-1 
Handling Temporary Files ..... ' . . . . . . . . . . . . . . . . 9-3 
Handling User Errors . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
Warning the User about Family Substitution Changes . 9-4 

DRC Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 
Activating the DRC System. . . . . . . . . . . . . . . . . • . . 9-4 
Deactivating the DRC System . . . . . . . . . . . . . . . . . . 9-5 
Making Inquiries about the Status of the DRC System . 9-6 

Creating SYSTEM/USERDATAFILE Entries for Disk Resource 
Control ....................................... 9-6 

Examples of SYSTEM/USERDATAFILE Entries ...... 9-7 
Maintenance of Integral Limits . . . . . . . . . . . . . . . . . 9~ 
SYSTEM/USERDATAFILE Entry Overflow. . . . . . . . . . 9-8 
DRC Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 

Section 10. Mirrored Disk Feature 

Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 
Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 

xiv 8600 0668-000 



Contents 

Options ............ ; ........................... . 10-2 
10-2 
10-2 
10-3 
10-3 
10-3 
10-3 
10-4 
10-4, 
10-4 
10-5 
10-5 
10-6 
10-7 
10-7 
10-8 

Initiation ....................................... . 
Creating Mirrored Disks ..................... . 
Configuration Recommendations ............... . 

I/O Handling .................................... . 
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . .. 
Write Operations .......................... . 
Audits ................................. . 

Operational Information ............................ . 
Moving Packs within a System ................ . 
Moving Packs between Systems ............... . 
Offline Packs Returning Online ................ . 
Recovery ............................... . 
Mirror Deallocation ........................ . 
Transferring MCPs ......................... . 
Precautions ............................. . 

Section 11. Memory Disk Feature 

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
Vulnerability of Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
Creating a Memory Disk Unit. . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
How Memory Disk Is Initialized . . . . . . . . . . . . . . . . . . . . . . . . 11-2 
Memory Disk Halt/Load Recovery ...................... 11-2 
Memory Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 
I/O Handling ..................................... 11-3 
Operational Restrictions ....... . . . . . . . . . . . . . . . . . . . . . . 11-3 
Operational Considerations ... '. . . . . . . . . . . . . . . . . . . . . . . . 11-3 
Explanation of Selected System Commands ............... 11-4 

CU (Core Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4 
MM (Memory Module) . . . . . . . . . . . . . . . . . . . . . . . 11-4 
OL (Display Label and Paths) . . . . . . . . . . . . . . . . . . 11-4 
PER (Peripheral Status) . . . . . . . . . . . . . . . . . . . . . . 11-4 
U (Utilization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 

Section 12. Recovery 

Isolating Defective Sectors ........................... 12-2 
Dealing with Damaged or Destroyed Disks. . . . . . . . . . . . . . . . 12-2 

Replacing a Base Pack. . . . . . . . . . . . . . . . . . . . . . . 12-2 
Replacing a Continuation Pack. . . . . . . . . . . . . . . . . 12-3 

Moving Disks to Another Disk Drive. . . . . . . . . . . . . . . . . . . . . 12-4 
Moving Data to Another Disk. . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 

Using the RES Command. . . . . . . . . . . . . . . . . . . . . 12-5 
Using the REPLACE Command. . . . . . . . . . . . . . . . . 12-5 

Directory Error Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 
Standard Disk I/O Error Recovery ............... 12~6 
Directory Record Integrity Tests .. '. . . . . . . . . . . . . . . 12-6 
Automatic ERRORHANDLER Family Rebuilds ...... 12-6 
Directory Duplication. . . . . . . . . . . . . . . . . . . . . . . . 12-6 

8600 0668-000 xv 



Contents 

xvi 

The Family Rebuild Process ......................... . 
Family Rebuilds for a New Base Pack or Halt/Load .. . 

Responding to Errors ................... . 
Terminating the Rebuild ................. . 

Family Rebuilds Initiated by Your Installation ...... . 
Family Rebuilds for Directory Error Recovery ....... . 
Family Rebuild Errors ....................... . 

Working with Damaged or Incorrect Archive Directories ...... . 
Restoring Archive Directories ................. . 
Restoring Damaged Archive Directory Records 

Appendix A. Layout of Archive Directory Records 

12-8 
12-9 
12-9 

12-10 
12-10 
12-10 
12-10 
12-11 1 

12-11 
12-12 

Layout of the Archive Data Records. . . . . . . . . . . . . . . . . . . . . A-I 
About Word Allocation in Archive Records. . . . . . . . . . . . . . . . A-4 

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

8600 0668-000 



Figures 

1-1. 
1-2. 
1-3. 
1-4. 
1-5. 
1-6. 

8600 0668-000 

A Disk File Header ..................................... . 
The Flat Directory ...................................... . 
The Flat Directory ...................................... . 
A Multidisk Family ...................................... . 
The File Access Structure Table (FAST) ....................... . 
The File Access Structure Table (FAST) ....................... . 

1-3 
1-4 
1-5 
1-6 

1-14 
1-16 

xvii 



xviii 8600 0668-000 



Tables 

4-1. Archive Subsystem Statements ............................. . 4-4 

8600 0668-000 xix 



xx 8600 0668-000 



Section 1 
Disk Subsystem Concepts 

This section provides an overview of disk subsystem concepts and terminology that 
are referred to throughout this guide. The section is intended for readers who are 
not familiar with disk concepts or U nisys A Series systems. This section explains the 
following topics: 

• Disk subsystem components 

• Disks and disk packs 

• The structure of data on disks 

• Families and multidisk families 

• Disk files 

• Disk file access 

Disk Subsystem Components 
The disk subsystem on U nisys A Series systems consists of the following components: 

.• The disk or disk pack media 

• The disk drives, which are also called units or peripheral devices 

• The disk drive controller and exchange, which controls the disk drive units and 
transfers information between the host system and the disk drive units 

• The I/O controller, which provides the interface between the host system and the 
disk drive controller 

• The software that controls the structure and operation of the disk subsystem and 
provides the structure for the information stored on the subsystem 

Disks and Disk Packs 
A disk is a data storage device that consists of one or more circular metal plates that 
are often called platters. These platters rotate at high speed around a spindle that is 
mounted in a disk drive. 

One or both faces of each platter are coated with a thin film of magnetic material, and 
data is recorded on the disk as magnetic changes in this material. Data on the platter is 
accessed by a disk drive component called the read/write head. 

Data is stored on the platters in concentric circles that are called tracks. These tracks 
are very narrow and there can be hundreds of them per inch. All the tracks on a disk 
that have the same radius form a cylinder. 

8600 0668-000 1-1 



Disk Subsystem Concepts 

\ 

Disks can be divided into two main types that have different. physical characteristics. 
The two types of disks are disk packs and head-per-track disks. Various models of disks 
are available that have different capacities and performance capabilities, but Unisys 
A Series system software treats the models as logically identical. 

Disk packs have multiple platters that are mounted on a central spindle. Disk packs 
have one or more movable read/write heads for each recording surface. These read/write 
heads move from track to track to access data. The movement of the read/write heads 
to the designated track is called a seek. Disk packs can be removable or nonremovable 
depending on the disk pack model. N onremovable disk packs operate with smaller 
tolerances, so that tracks can be closer together and the disk pack can store more data. 

Head-per-track disks have fixed read/write heads. Each track on each recording surface 
'has one read/write head so that the read/write head does not need to be moved to the 
desired track. Physical head-per-track disks are no longer supported on Unisys A Series 
systems. However, memory disk is treated as though it were a head-per-track disk. For 
details, refer to Section 11, "Memory Disk Feature," later in this guide. 

The Structure of Data on Disks 

1-2 

Disk tracks are physically divided into portions known as sectors. A sector is 30 words 
(180 bytes) long and is the smallest portion that can be read from or written onto a disk. 
Sectors are also called segments. Segments, as they refer to disk storage, are different 
from application program segments. This guide uses the term sector when referring to 
disk segments rather than segment to avoid confusion. Each sector on a disk has a 
unique address that the system uses to identify the location of the sector. 

When you create a disk file or add to it, the data is not necessarily stored in one 
contiguous sequence of sectors. Instead, the data is stored in portions called areas 
that each contain an equal number of sectors. An area is the contiguous group of 
sectors allocated for that portion of the file. An area is also referred to as a row. The 
file attributes you designate refer to the term area, while the Master Control Program 
(MCP) refers to the term row in its processing. An area is measured in terms of logical 
records, where a logical record is the amount of data that is accessed by the execution of 
one read or write statement in a program. A row is measured in terms of sectors. All 
the areas on a disk do not need to be the same size, but all the areas of a single file must 
be the same size. Figure 1-1 illustrates the structure of disk tracks and sectors. 

8600 0668-000 



SINGLE 
PLATTERS 
ON A DISK 
PACK 

Disk Subsystem Concepts 

DISK TRACKS 

SECTORS 
ON A TRACK 
(180 BYTES LONG) 

DISK PACK 

Figure 1-1. The Physical Structure of a Disk 

The system accesses each area of a file by obtaining the physical address of the area from 
a special structure called the disk file header .. Each disk file has a header, which also 
includes information such as the name of the file, the length of its records, its creation 
date, and so on. Figure 1-2 illustrates the structure of the disk file header. 

8600 0668-000 1-3 



Disk Subsystem Concepts 

1-4 

POINTERS TO 
AREAS ON DISK 

AREAS ARE COMPOSED 
OF CONTIGUOUS 
SECTORS 

DISK FILE 
HEADER 

o 

o 

o 

o 

o 

o 

o 

Figu re 1-2. A Disk File Header 

DISK PACK 

The disk file headers of all the permanent files on a disk are stored in a special file called 
the flat directory. When the system needs to access a file, it locates the disk file header 
in the flat directory for the appropriate disk and then uses the physical addresses in the 
header to access the individual areas of the file. The flat directory is also referred to as 
the system directory. Figure 1-3 illustrates the structure of the flat directory. 

8600 0668-000 



Disk Subsystem Concepts 

FLAT 
DIRECTORY 

DISK FILE 
HEADER 1 

DISK FILE 
HEADER 2 

DISK FILE 
HEADER N 

EACH DISK FILE HEADER 
POINTS TO VARIOUS 
AREAS ON DISK 

Figure 1-3. The Flat Directory 

Families and Multidisk Families 
A family consists of one or more disks that are logically grouped together and treated as 
a single entity by the system. Each family has a family name, which can consist of up to 
17 alphanumeric characters (letters and digits). When you access a file, you designate 
both the file name and the family name as < file name> ON <family name>. The file 
name and the family name, when designated together, are called the file title. 

The family name of a disk and other information about the disk is stored in a structure 
called the label. . The label is stored on the first 28 sectors of the disk. The label also 
contains the serial number that your site assigns to the disk, and a pointer to the flat 
directory of the disk, if there is a flat directory. When a program needs to access or 
allocate a file, the system uses the family name to locate the disk that contains the file. 
The system uses the serial number to distinguish disks from each other when they are 
online. For more information about the label, family name, and serial number, refer to 
Section 2, "Disk Initialization and Operation." 

The flat directory is stored on only one member of the family, although other disks in the 
family can have duplicate copies of the flat directory. The family member that contains 
the flat directory that the system is currently using to access the family is called the base 
pack. 

Sometimes one disk is not large enough to store all the data you want to put on it. The 
system allows you to have several disks in a family so that files can extend across several 
the members of the family. A family that consists of more than one disk is known as a 

8600 0668-000 1-5 



Disk Subsystem Concepts 

1-6 

multidisk family. Although a multidisk family can be mixture of different disk pack 
models, it cannot be a mixture of memory disks and disk packs. 

The first disk that you enter into a family is the base pack; it contains the fiat directory 
for the family. You can add more disks to the family as continuation packs. The system 
logically links the family members together so that they are treated as a single· entity. A 
family can have up to 254 continuation packs. Continuation packs do not necessarily 
contain a fiat directory file. Refer to Section 2, "Disk Initialization and Operation," for 
information about how to create a multidisk family. 

The system usually allocates different areas of a particular file on different members 
of the same family. You have the option of designating which family members are 
to receive areas of the file by using the F AMIL YINDEX file attribute. Refer to the 
A Series I/O Subsystem Programming Reference Manual for more information about 
the FAMILYINDEX attribute. The system cannot spread a file over disks that are in 
different families. Figure 1-4 illustrates the structure of a multidisk family. 

FLAT DIRECTORY 
RSIDES ON 
BASE PACK 

FLAT 
DIRECTORY 

DISK FILE 
HEADER 1 

DISK FILE 
HEADER 2 

DISK FILE 
HEADER N 

A FILE CAN RESIDE ON MORE THAN 
ONE DISK IN A MULTIDISK FAMILY 

Figure 1-4. A Multidisk Family 

~ CONTINUATION 
~PACK 1 

~ CONTINUATION 
~PACK2 

It is important to remember that disks with the same family name are not necessarily in 
the same family. If you try to use a disk that has the same family name as another disk 
on the system and the two. disks are not in the same family, the system can issue an error 
or RSVP message. 

When the system needs to access a multidisk family, the base pack and any continuation 
pack that contains a copy of the fiat directory must be online. If the file to be accessed is 
spread over several family members, continuation packs must be brought online when 
areas are needed that are stored on those continuation packs. 

8600 0668-000 



Disk Subsystem Concepts' 

The system assigns a family index number to each member of a family when that 
member is first added to the family. The family index number is incremented' by one for 
each new member. The initial base pack is assigned family index 1, the first continuation 
pack is assigned family index 2, and so on. Programs can use the F AMIL YINDEX file 
attribute to distribute files or areas of files to particular disks in the family. There is no 
connection between the serial number of a disk and the family index number of the disk. 

The file name of the flat directory is SYSTEMDIRECTORY/ < family index number> , 
where < family index number> is the three-digit family index number of the disk on 
which the flat directory is stored . 

. You can use the PER PK version of the PER (Peripheral Status) system command to 
examine the family name, serial number, and family index number of all the online disks 
on the system. 

Disk Files 
A disk file is a named collection of data that is stored on disk. All disk files have disk file 
headers that describe the ·file. The header contains the physical addresses where the 
file is stored on the family and various file attributes. The header for a permanent file 
is stored in the flat directory of the family on which the file is stored; the header for a 
temporary file is stored in main memory. 

File Attributes 

File attributes are specifications included with each file that define basic information 
about that file. Some of these attributes identify the file, while. others describe the 
structure of the file. File attributes that identify the file include FILENAME, CYCLE, 
and VERSION. File attributes that describe the structure of the file include AREAS, 
AREALENGTH, BLOCKSIZE, and MAXRECSIZE. Many of the file attributes for a disk 
file are stored in the header of the file. 

When someone at your installation wants to create a new disk file, that person must 
decide what values to assign to file attributes. File attributes can be assigned either 
within a program or with file equations at compilation or execution time. 

Creating a New Disk File with Fixed-Length Records 

Use the following procedure to assign attributes to files with fixed-length records: 

1. Assign to KIND the value DISK. 

2. Assign to FAMILYNAME the name of the family on which you want the file to be 
stored. The default value ofFAMILYNAME is DISK If you use family substitution, 
the family name can be changed to the family designated by the family specification. 
Refer to "Family Substitution" in Section 7, "Planning and Installation," for more 
information on this subject. 

3. Assign to FILENAME the name you choose for the file. 

4.' Assign to NEWFILE the value TRUE. 

8600 0668-000 1-7 



Disk Subsystem Concepts 

5. Assign to FILEKIND the mnemonic value that describes the internal structure and 
purpose of the file. The default value of FILEKIND is DATA 

6. Assign to FRAMESIZE a value of 4, 8, or 48 to indicate how many bits are to be 
transferred as one unit of data during an I/O operation. If you use a value of 4, 
data is transmitted in 4-bit units, which are equal to hexadecimal characters. If you 
use a value of 8, data is transmitted in I-byte units, which are equal to EBCDIC or 
ASCII characters. If you use the value 48, data is transmitted as full words (48 bits). 
Other file attributes, such as AREALENGTH, BLOCKSIZE, and MAXRECSIZE are 
expressed in the units assigned in FRAMESIZE. 

7. A logical record is the amount of data accessed by one execution of a read or write 
statement in a program. Determine how many words or characters each logical 
record is to contain and assign that value to MAXRECSIZE. The default value of 
MAXRECSIZE is 30 words, or 180 EBCDIC characters. 

8. If your program accesses records sequentially, it can reduce I/O operation time by 
reading or writing several physically adjacent records in one block. The number of 
logical records accessed as one block is determined by the attribute BLOCKSIZE. 
The default value of BLOCKSIZE is the value of MAXRECSIZE, which means that 
only one logical record is accessed by each I/O operation. When determining the 
block size, keep in mind that if you use large blocks, the I/O operations are efficient, 
but you are tying up a large amount of main memory. On the other hand, if you use 
very small blocks, you must perform more I/O .operations. 

9. Determine the size, in FRAME SIZE units, that you want to allocate for each 
area of the file and assign that value to AREALENGTH. The default value of 
AREALENGTH is MAXRECSIZE multiplied by 1000 and then rounded up so that 
the value can be evenly divided by the value of BLOCKSIZE. Areas that are too 
small or too large have disadvantages. If the areas are too small, they limit the 
number of records in the file. If the areas are too large, it is more difficult for the 
system to find the contiguous disk sectors needed to store each area. 

Using the AREAS Attribute 

The AREAS attribute designates how many areas can be allocated for the file; the 
default value of AREAS is 20. When the file is created, the number of areas designated 
by AREAS is not automatically allocated. Instead, the system leaves an empty entry in 
the disk file header for each possible area. The system allocates an area to the file the 
first time a program attempts to read or write records that must be placed in that area. 
When an area is allocated, the system places a pointer in the header to that area. 

If all the areas for a file have been allocated and you need to expand th.e file, the system 
increases the value assigned to AREAS and automatically allocates new areas if the 
attribute FLEXIBLE is assigned its default value of TRUE. A file can contain up to 1000 
areas. 

Opening the File 

1-8 

After you have finished the above procedure to assign the various file attributes, you can 
open the file. When you open the file, the system creates a header for the file and stores 
the values of the various file attributes in the header. The system also enters values 

8600 0668-000 



Disk Subsystem Concepts 

automatically for other file attributes, such as CREATIONDATE and CREATIONTIME. 
Then you can write records to the new file. When you have finished processing the 

file, you can close it so that it becomes a permanent file. The system then updates the 
values of certain file attributes, such as LASTRECORD, and places the header in the fiat 
directory of the disk. Refer to "Temporary and Permanent Files" in this section for 
more information on this subject. 

Accessing a Permanent File 

To access an existing permanent file, you do not need to reassign all the above attributes. 
If you assign the value TRUE to the DEPENDENTSPECS file attribute before you 
access the file, you must designate only the FILENAME, FAMILYNAME, and KIND; the 
file retains certain previous attribute values. 

Many other file attributes can be selected, and these attributes are also stored in the 
disk file header. Refer to the A Series I/O Subsystem Programming Guide for more 
information about file attributes. 

File Generations on Noncataloging Systems 

In certain application programs, it is convenient to create different generations of 
the same file, such as a new generation for each time the program runs. This section 
discusses generations for noncataloging systems only. Refer to "File Generations" in 
Section 5, "Cataloging," for more information about this subject. 

There are two ways to differentiate the generations of a file on a noncataloging system. 

Distinguishing Generations with Unique File Names 

The first way to differentiate the generations of a file on a noncataloging system is to 
assign a different file name to each generation. An example of this approach would be 
PAYABLE/~Ol, PAYABLE/002, PAYABLE/003, and so on. All the generations can be 
online at once because they have different file names. 

Distinguishing Generations with the CYCLE and VERSION Attributes 

The second way to differentiate the generations of a file on a noncataloging system is to 
use the CYCLE and VERSION attributes to distinguish each generation. CYCLE and 
VERSION are integer values; the higher the value of CYCLE, and the higher the value 
of VERSION within that CYCLE, the better the genealogy of the generation is said to 
be, relative to other generations. Only one generation can be online at one time, because 
the file names are the same. If you do not assign values to CYCLE and VERSION, the 
default value is 1 for CYCLE and 0 for VERSION. You must assign CYCLE in order to 
use VERSION, but assigning VERSION is optional when you use CYCLE. 

8600 0668-000 1-9 



Disk Subsystem Concepts 

The following example illustrates how the system determines the genealogy of each 
generation when CYCLE and VERSION are used on a noncataloging system. In this 
example, the first entry is the generation with the best genealogy and the last entry is 
the generation with the worst genealogy. 

Cycle Version 

4 0 

3 3 

3 2 

2 3 

2 2 

2 1 

2 0 

1 5 

1 0 

CYCLE and VERSION function in the following manner when you try to access an 
existing file on noncataloging systems: 

• If you designate CYCLE and VERSION when you want to access the file, the system 
locates the generation that has that exact CYCLE and VERSION. If a file with the 
proper file name is not online or does not exist, the system displays a "NO FILE" 
message on the ODT. 

If a file with the proper file name, but the wrong CYCLE and VERSION, is online, 
the system displays an "UNMATCHED GENEALOGY" message on the ODT. 

• If you specify CYCLE, but not VERSION, when you want to access the file, the 
system locates the generation with that exact CYCLE and the VERSION equal to 
o. If the generation that is online does not have that CYCLE and VERSION, the 
system displays an "UNMATCHED GENEALOGY" message on the ODT. 

. Ifno generation of the file is online, the system displays a "NO FILE" message on 

. the ODT. 

• If you do not specify CYCLE and VERSION when you want to access the file, the 
system locates the generation that is online. If no generation of the file is online, the 
system displays a "NO FILE" message on the ODT. 

Resident and Nonresident Files 

1-10 

Files are often referred to as resident or nonresident. A file is resident if it is the 
primary copy of the file (as opposed to a backup copy) and it is stored on disk, regardless 
of whether or not the disk is online. A file is nonresident if there is no copy of the 
file on the disk family, but there are one or more backup copies of the file on library 
maintenance tapes, other disk families, or both. Backup copies of files are tracked by the 
archive subsystem and the catalog subsystem. The terms resident and nonresident in 
this guide do not pertain to the file attribute RESIDENT. 

8600 0668-000 



Disk Subsystem Concepts 

Temporary and Permanent Files 

Disk files can be either temporary or permanent. The header of a temporary file header 
is not stored in the flat directory of the family on which the file is located. When a 
program closes a temporary file, the contents of the file are no longer available, and the 
disk space of the file is returned to the system. A file is permanent when it has an entry 
in the flat directory of the family on which the file is stored. When a program closes a 
permanent file, the contents of the file remain stored on disk. 

A temporary file is created when the NEWFILE file attribute is assigned the value 
TRUE and a program opens the file. The program can then write data in the file and 
access it if necessary. If steps are not taken to make the file permanent, the disk space 
of the file is returned to the system when that file is closed. 

You can make a temporary file into a permanent file in one of the" the following ways, 
depending on your program: 

• In an ALGOL program, use the LOCK or CRUNCH options in the CLOSE 
statement that closes the file. "Both options make the file permanent; CRUNCH also 
causes the unused portion of the last area of the file to be returned to the system. 

• In a COBOL or COBOL74 program," use the LOCK, CRUNCH, or SAVE options 
in the CLOSE statement that closes the file. All three options make the file 
permanent. LOCK also marks the file so that it cannot be reopened during that 
execution of the program. CRUNCH also causes the unused portion of the last area 
of the file to be returned to the system. 

When a new file is opened, it is made permanent immediately if you specify one of the 
following file attributes: 

• Assign to the PROTECTION file attribute either the value SAVE or the value 
PROTECTED. When the file is opened, it becomes a permanent file. 

• Assign the to SENSITIVEDATA file attribute the value TRUE. When the file is 
opened, it becomes a permanent file. 

After a file is permanent, it remains permanent unless you remove it. You can remove a 
permanent file when you perform one of the following actions: 

• Use the WFL statement REMOVE to remove the disk file header from the fiat 
directory. If the file is not in use, its disk space is returned immediately to the 
system. 

• In a COBOL, COBOL74, or ALGOL program, use the PURGE option in the CLOSE 
statement that closes the file. 

• Create another permanent file with the same name in the same family. If the 
OP + AUTORM version of the OP (Options) system command has been designated, 
the system automatically removes the old file with the duplicated name from the 
family. 

If you remove a permanent file while it is still being used by other programs, the file 
becomes a temporary file. The file can still be used by the other programs that had 

8600 0668-000 1-11 



Disk Subsystem Concepts 

already opened it. The disk space is not returned to the system until the file is closed by 
the last program using it. 

When you make a file permanent on a cataloging system, the system places an entry 
for that file in the catalog. If you remove a-permanent cataloged file and no backup 
copies of the file exist, the system deletes the catalog entry for the file. If you remove 
a permanent cataloged file and backup copies of the file exist, the system changes the 
catalog entry to indicate that there are no resident generations of the file. 

Disk File Access 

1-12 

Computer performance depends to a large degree upon the ability to efficiently perform 
I/O operations. Unisys has developed a very efficient and reliable method for accessing 
disk files so that the system can operate at its full potential. This access method consists 
of two parts: 

• The disk access structure used by the entire system 

• The flat directory on each disk family 

Refer to "The Structure of Data on Disks" in this section for more information about the 
flat directory. 

The system has a special disk file called the disk access structure file or the catalog file. 
This disk file is stored on one family in the system. Use the system command DL 
CATALOG to designate the family on which the catalog file is to be stored. The catalog 
disk file contains several components, which include the pack access structure table 
(PAST) and the file access structure table (FAST). On tape security subsystems, the 
catalog disk file contains the volume directory. On cataloging systems, the catalog disk 
file contains the catalog and the volume library. 

Whenever a disk family comes online, the system uses the disk file family name to look 
up the PAST entry for that family. The PAST entry is used to locate the FAST entries 
for the family whenever the system needs to locate a permanent disk file. The system 
looks up the file name in the FAST entries to determine the location of the disk file 
header for the requested file in the flat directory. 

The aCcess structure functions differently on cataloging and noncataloging systems. 
The access structure for a cataloging system contains entries for all available versions 
of all resident and backup files of all online and volumed disk families. The access 
structure for a noncataloging system contains only entries for the files that are currently 
resident on an online disk family on the system. The file name of the access structure on 
noncataloging systems is SYSTEM/ACCESS/ < family index number>. The file name 
of the access structure on cataloging systems is SYSTEM/CATALOG/ < family index 
number>. The < family index number> indicates which member of the catalog family 
contains the access structure. 

The MCP constructs the access structure the first time the system is initialized so that 
the access structure contains entries for each family that is online at that time. Each 
time a family is brought online, entries for the files of that family are entered into the 
access structure. When a family is removed with the system commands CLOSE (Close 

8600 066&-000 



Disk Subsystem Concepts 

Pack) or POWER (Power Up!Down), references to its files are removed from the access 
structure unless it is a ~taloging system and the family has an entry in the volume 
library as the result of the WFL statement VOLUME. Refer to Section 5, "Cataloging," 
for more information about this subject. 

Pack Access Structure Table (PAST) 

The PAST contains pointers into the FAST. These pointers indicate where in the FAST 
the entry for each family is located. The PAST is not accessed each time the MCP needs 
to locate a disk file. Instead, the MCP reads the PAST entries into a table in main 
memory when the system is initialized. The MCP then can access the FAST directly. 

Each time a family is brought online, the MCP checks the PAST to see if there is an 
entry for the family. If there is an entry but it is not up-to-date, or if the family is being 
brought online for the first time and thus does not have an entry, the MCP creates 
PAST and FAST entries for the family and stores a copy of the the PAST entry in main 
memory. 

File Access Structure Table (FAST) 

When the MCP needs to access. a disk file, it w;es the FAST to locate the disk file header 
in the flat directory of the appropriate family. The FAST is a sorted table that can be 
logically considered as a hierarchical tree structure. The FAST contains a pointer to 
the disk file header or catalog record of each disk file on the system. This allows the 
MCP to read the FAST entry for the family and then use the pointer to quickly locate 
the disk file header in the unsorted flat directory. Figure 1-5 illustrates how the FAST 
corresponds to the flat directory of one family. 

Using the FAST and flat directories to access files is efficient, and it provides a safety 
mechanism in case either the FAST or the flat directory experiences a problem. 

The FAST entries for a family are logically organized as a tree structure, but the 
structure is unusable if it experiences data corruption or some other problem. However, 
the system can circumvent the problem by reconstructing the FAST entries for each 
family by reading the flat directory of that family. Refer to "Family Rebuilds" in this 
section for more details about this subject. 

The flat directory is an unsorted structure that is accessed randomly through the FAST. 
Thus, if there is a problem with a record in the flat directory, the problem is restricted to 
one record and, at most, one file header. The rest of the flat directory, which contains 
records for other headers, C8n be successfully accessed. 

8600 0668-000 1-13 



Disk Subsystem Concepts 

FAST 

POINTERS TO 
FILE HEADERS 

(TREE STRUCTURED) 

FAMILY 1 

FAMILY 2 

FAMILY N 

0 
0 
0 

0 

• 0 

• 0 
0 

FLA 
DIRECTORY 
FAMILY 1 

FLAT' 
DIRECTORY 
FAMILY 2 

HEADER 

Figure 1-5. The File Access Structure Table (FASn 

1-14 

TO DISK OR 
DISKS OF 
FAMILY 1 

TO DISK OR 
DISKS OF 
FAMILY 2 

TO DISK OR 
DISKS OF 
FAMILY N 

8600 0668-000 



Disk Subsystem Concepts 

Process of Accessi ng Disk Fi les 

When you access a disk file by designating its file title (the file name and the family 
name), the following procedure occurs: 

1. The MCP uses the family name to locate the proper family entry in the FAST. 

2. The MCP reads the file entries for the family in the FAST and locates the pointer to 
the disk file header for the file with that file name. 

3. The MCP reads the disk file header from the flat directory. 

4. The MCP obtains from the header the physical disk addresses of the area or areas 
that contain the disk file. 

5. The MCP accesses the data of the file at those physical addresses. 

Figure 1-6 illustrates how the components of the access structure and the flat 
directory allow efficient access of disk files. 

8600 0668-000 1-15 



Disk Subsystem Concepts 

---51 

MCP 

PAST ---51 

ENTRIES 

---51 

LOCATE 
PROPER 
FAMILY 
ENTRY 

FLAT 
DIRECTORY 
FAMILY 1 

HEADER "-

HEADER "-

0 
0 '--
0 

HEADER '-FAST 
(TREE STRUCTURED) 

/ 
'--

t-" 

FLAT FAMILY 1 0 
0 DIRECTORY 
0 FAMILY 2 i--

HEADER '-
t--

FAMILY 2 0 HEADER """-
0 
0 -~ 

0 '-
~ 

0 
0 

'--~ ~ 

,..-

FAMILY N 0 
0 
0 

i--

HEADER 

"-

LO~ FLAT 
DIRECTORY 
FAMILY N 

"-POINTER 
TO DISK 
FILE 
HEADER 

HEADER 

HEADER '-

0 '--0 
0 

HEADER '--

'--

READ DISK 
FILE HEADER 

OBTAIN ADDRESSES 
OF DISK AREAS 

Figure 1-6. The Process of Accessing Disk Files 

Archive Directories and the Archive Access Structure Table 

DISK OF 
FAMILY 1 

DISKS OF 
FAMILY 2 

iii 
ACCESS 

DATA 

iii 
DISKS OF 
FAMILY N 

For each disk family at your installation, the system creates and maintains an archive 
directory on the DL CATALOG family. These archive directories keep track of backup 

1-16 8600 0668-000 



Disk Subsystem Concepts 

copies of disk files made with the WFL ARCHIVE FULL, ARCHIVE INCREMENTAL, 
ARCHIVE DIFFERENTIAL, ARCHIVE ROLLOUT, and ARCHIVE MERGE 
statements. The system stores a record in an archive directory for each file backed up by 
anARCHIVE WFL statement. The system retrieves records from the archive directory 
by the names of the files that are backed up. The system uses a special set of index 
records stored in each archive directory to rapidly locate archive records for the file. The 
special index structure in an archive directory is called an archive access structure table 
(AAST). 

Family Rebuilds and Archive Rebuilds 

The MCP automatically handles file access structures and archive access structures. The 
only time your installation is aware of these access structures is during the processes 
known as family rebuilding and archive rebuilding. A family rebuild is·the process the 
system uses to construct or reconstruct the FAST entries for a family by sequentially 
reading its flat directory. Similarly, an archive rebuild is the process the system uses to 
construct or reconstruct the AAST entries for a family by sequentially reading its archive 
. directory. 

Family Rebuilds 

Family rebuilds occur in the following situations: 

• Automatically when you bring a base pack online on a noncataloging system and no 
local access structure table (LAST) is found on the base pack 

• Automatically to recover from certain directory errors when they occur 

• When you use the RB (Rebuild Access) system command to initiate a rebuild 

If during a family rebuild, two disk file headers are fOUl)d with the same file name, the 
rebuild process bypasses the second file. If you do not take action, it is not possible 

. to access the second copy of the file. However, if you use the system REMOVE or 
CHANGE command to remove or rename the first copy of the file, the next family 
rebuild reveals the second copy of the file. 

Archive Rebuilds 

Archive rebuilds occur in the following situations: 

• Automatically to recover from certain directory errors or from certain directory 
actions interrupted by halt/loads. 

• When you use the RB (Rebuild Access) system command to initiate a rebuild. 

Local Access Structure Table (LAST) 

To eliminate the need for a family rebuild on a noncataloging system each time a pack is 
brought online, the system uses the LAST to restore the FAST, instead of rebuilding the 
FAST from scratch. The LAST is written to the base pack whenever the base pack is 

8600 0668-000 1-17 



Disk Subsystem Concepts 

closed (with the system command CLOSE), freed (with the system command FREE), 
or powered off (with the system command PO). When an operator readies the pack, the 
system attempts to restore the FAST from the LAST. If the restoration is successful, a 
family rebuild is not carried out. 

The LAST, however, is not created in the following conditions: 

• The system is a cataloging system. 

• The pack is not write-enabled when closed with the CLOSE command. 

• The pack has no room for the LAST when the pack is closed with the CLOSE 
command. 

• The pack is manually turned off without first entering the system commands 
CLOSE, FREE, or PO. 

• I/O errors are encountered during the creation of the LAST. 

• The pack is mirrored. 

Available Disk Space 

1-18 

When a disk is ready at haltlload time or when a family is brought online, the MCP 
needs to know what space is available on each disk. The MCP keeps track of unused 
disk space by means of tables stored in main memory that list available disk space. The 
process of constructing or reconstructing tables of available disk space is called directory 
complementing. 

The MCP starts with the assumption that the entire disk (with the exception of the label 
area) is available and then reads the disk file headers in the flat directory. Each time 
the MCP reads a header, it removes the space allocated to that file from the tables of 
available space. Mer the last header is read and processed, the remaining space on the 
disk is listed in the tables of available disk space as being available for use. The tables 
. of available space are different from the master available table (MAT), which contains 
pointers to the disk sectors that are not defective so that no defective sectors are used. 

8600 0668-000 



Section 2 
Disk Initialization and Operation 

This section describes the procedures for setting up and using disks and disk families. 
This section covers the following topics: 

• Preparing a disk for use 

• Identifying types of disks used on A Series systems 

• Creating multidisk families 

• Identifying online and offline disks 

• Releasing a disk from system use 

• Saving disk units 

• Using the RES, SQUASH, and XD commands 

Preparing a Disk for Use 
Before a disk can be used for the first time, the following two steps must be performed'to 
prepare it: 

1. Perform'the initialize, verify, and relocate (IVR) C?peration. 

2. Issue the RC (Reconfigure Disk) system command. 

Performing the IVR Operation 

Before Unisys ships a disk to a customer, it uses the IVR operation to write sector 
boundaries and the label on the disk. The IVR operation also creates the master 
available table (MAT), which contains pointers to the disk sectors that are usable. Ifa 
sector is defective, the IVR operation deletes the pointer to the bad sector for the MAT 
so that it cannot be used. The MAT is different from the available disk table, which 
keeps track of unallocated or unassigned disk space. 

Although the IVR operation is available on some systems, it should never be used except 
under the direction of your U nisys field engineer. 

Using the RC Command to Create a Disk Family 

Before your installation uses a disk, you must use the RC command to prepare the disk 
for system use. In the RC command, you designate the family name and serial number 
you want to assign to the disk. The family name and serial number are stored on the 
disk label. You can use the OL (Display Labels and Paths) system command to examine 
disk label information. 

8600 0668-000 2-1 



Disk Initialization and Operation 

To create a base back, reconfigure the disk that you want to be the base pack of the 
family. The base pack contains the fiat directory and must always be online when the 
family is accessed. Use the following RC command syntax: 

RC PK <unit number> NAME <family name> 

The variable < unit number> is the unit number of the disk drive on which the base 
pack is mounted, and the variable < family name> is the name that you want to call the 
family. The family name must be different from the name of any family that is online to 
the system. 

The family name can be up to 17 alphanumeric characters· (letters and digits). When a 
program needs to access or allocate a file, the system uses the family name to locate the 
correct disk. 

When you reconfigure a disk with the RC command or purge it with the PG (purge) 
system command, any files on that disk are made permanently inaccessible. Care should 
be taken so that a disk is not reconfigured by accident. The OWNER clause of the 
RC command acts as a safety feature to ensure that you actually want to reconfigure 
the disk. When you first reconfigure the disk, you can assign to the OWNER clause 
any name of up to 14 alphanumeric characters. Then, if you ever try to reconfigure 
that disk again, the system displays a message on the ODT that specifies the value 
of OWNER and asks the operator if the reconfiguration is permissible. Refer to the 
A Series System Commands Operations Reference Manual for the proper syntax of the 
RCcommand. 

Identifying the Types of Disks Used on A Series 
Systems 

2-2 

Disks to be used on A Series systems are logically organized in one of two ways: 

• Native-mode disks 

• Interchange disk packs 

Descriptions for these disk types are provided in the following table: 

Disk Type 

Native-mode disk 

Interchange disk pack 

Description 

This disk is used on all A Series systems. A native-mode disk cannot 
be transferred from an A Series system to other Unisys systems such 
as a B 1000, B 2900, B 3900, or B 4900 system. When this 
guide uses the term disk, it is referring to native-mode disks unless 
otherwise indicated. 

This disk pack has a directory format that enables files to be 
transferred from a Unisys A Series system to other Unisys systems 
such as a B 1000, B 2900, B 3900, or B 4900 system. 
Interchange disk packs have many limitations and are not discussed 
in this guide. 

8600 0668-000 



Disk Initialization and Operation 

Creating Multidisk Families 
A multidisk family consists of several disks that have the same family name and are 
logically linked together so that they are treated by the system as a single entity. The 
disks in the family, other than the base pack, are called continuation packs. Multidisk 
families allow much more data to be stored on one family than is possible with a single 
disk family. Different models of disk packs can be members of the same family, but 
a family cannot be a mixture of disk packs and memory disks. For an overview of 
disk family concepts, refer to "Families and Multidisk Families" in Section 1, "Disk 
Subsystem Concepts." 

Assigning a disk the same family name as another disk that is already online to the 
system does not automatically make the disks members of the same disk family. To 
create a multidisk family, you must use a special form of the RC system command to 
logically connect the disks together. Adding a continuation pack to an existing family 
with the special form of the RC command does not harm the files on the existing family, 
but it makes all the old files inaccessible on the disk that is reconfigured. 

Whenever you want to add a continuation pack to a family, use the RC command with 
the following syntax: 

RC PK <unit number> BP <serial number> NAME <family name> 

The variable < unit number> is the unit number of the disk drive on which the new 
continuation pack is mounted, the variable < serial number> is the serial number of the 
base pack, and the variable < family name> is the family name of the base pack. The 
base pack must be online when you reconfigure the continuation pack. 

Each disk also has a serial number, and when you reconfigure a disk with an RC 
(Reconfigure Disk) system command, you can optionally change the serial number. The 
serial number is a 6-digit number that you choose. The system uses the serial number to 
distinguish disks from each other. Installations can use serial numbers to give each disk 
a unique, permanent identification to aid in keeping track of disk use, as well as logging 
errors or other problems. Some installations use the serial number that is listed on the 
bottom of the disk by the manufacturer. Others choose a reference number such as the 
date that the disk was first used. Some installations give nonremovable disks the same 
serial number as the unit number of the disk drive on which the disk is mounted. The 
serial number of each online disk on a system must be unique, and Unisys suggests that 
serial numbers be assigned in a systematic fashion. 

8600 0668-000 2-3 



Disk Initialization and Operation 

Disk serial numbers are used for three separate purposes by the system: 

• The serial number is used to identify individual disk volumes. In this respect, 
the serial numbers appear in the PER PK display and system log entries. Note 
especially that two separate disks with the same serial number cannot be online at 
the same time, with the exception of disks in a a mirrored disk set. 

• The serial number assigned to a disk volume is used by the system to link it into its 
proper disk family. For a multiple disk family, each member in the family must have 
a unique serial number. For example, suppose that there is a two-volume disk 
family, where the first volume has serial number 111 and the second volume has 
serial number 222. Suppose that the second volume is temporarily out of order. 
Mer it is fixed, the second volume cannot be reconfigured back into the family with 
the serial number 222. Otherwise, the following error message would be issued: 

PKnn SERIAL NO. ALREADY IN FAMILY AS FAMILYINDEX 2 

To plac~ the disk into the family again, the operator would have to either designate a 
new serial number in the RC command or invoke the F AMIL YINDEX clause in the 
RCcommand. 

• At cataloging installations, the serial number of the first disk volume in the family 
is used to identify if a disk family is volumed so that it can contain cataloged 
files. Refer to "Handling Volume Libraries and Volume Directories" in Section 5, 
"Cataloging." 

Identifying Online and Offline Disks 
A disk is online to the system if all the following conditions are true: 

• It is mounted on a unit that has been logically connected to the system with the 
ACQUIRE (Acquire Resource) system command. 

• It is mounted on a unit that has not been reserved with the DR (Unit Reserved) 
system command. 

• It has not been logically detached from the system with the CLOSE (Close Pack) or 
FREE (Free Resource) system command. 

• Its label and its fiat directory (if it has one) have been read successfully. Refer to 
"Families and Multidisk Families" in Section 1, " Disk Subsystem Concepts," for 
more information about the fiat directory. 

A disk is offline to a particular system if any of the above criteria have not been met. 
An online continuation pack cannot be accessed unless there is an online base pack for 
the family. 

Releasing·a Disk from System Use 

2-4 

After. the system has successfully brought a disk online, the disk can be used by the 
system and user programs. While a program or system function is using the disk, that 
online disk cannot arbitrarily be taken offline or removed from the system. 

8600 0668-000 



Disk Initialization and Operation 

To place the disk offline, you must enter a specific system command such as CLOSE 
(Close Pack), UR (Unit Reserved), or SV (Save). 

After the system successfully brings a disk online, user programs and system processes 
can access the disk and use the files on the disk. An in-use, online disk does not become 
offline even if it experiences multiple I/O errors or becomes not ready or hung. To stop 
or prevent usage of an online disk, use the system command CLOSE or force the disk 
offline in some other way. 

To place a disk offline, you can issue one of the following commands: 

• FREE (Free Resource) 

• CLOSE (Close Pack) 

• PO (power Oft) 

• Certain forms of the RES (Reserve) command 

You can use the SV (Save) system command to prevent more files from being opened on 
the disk, but the SV command does not place the disk offiine. Refer to "Saving Disk 
Units" in this section. 

The following commands also take a disk offline, alter its status, and return it to the 
online state if it has not been saved with the SV command: 

• RC (Reconfigure Disk) 

• LB (Relabel Pack) 

• PG (Purge) 

If the system or a user program is using a disk, the system rejects all the above 
commands except SV and RES. Using the FREE, CLOSE, PO, RC, LB or PURGE 
commands would return the following message: 

PK<unit number> UNIT IN USE 

For instructions on using the RES command, refer to "Using the RES, XD, and 
SQUASH Commands" in this section. 

The system considers a disk to be in-use for any of the following reasons: 

• The disk contains one or more areas of files that are open and are in-use by the 
system or a user program. The in-use files can be either permanent files that are 
listed in the directory or new and temporary files that do not appear in the directory. 
You can use the system command PD (print Directory) to list permanent files. 

• The disk is being accessed by an MCP function such as a WFL REMOVE or 
CHANGE statement or a system RES or SQUASH command. 

• The disk is the current base pack of the family or contains an active duplicate 
directory (refer to the system command DD), and the family has one or more files 
that are open or a disk that is in-use. 

8600 0668-000 2-5 



Disk Initialization and Operation 

• The disk is a member of either an active halt/load family or the active DL JOBS, DL 
LOG, or DL OVERLAY families. 

• The disk is being processed by an MCP status procedure such as RY (Ready), 
CLOSE (Close Pack), RC (Reconfigure Disk), LB (Relabel Pack or HCU), or PG 
(purge). 

• On certain systems the disk contains an active bootcode file. 

To remove a disk from use (such as to power it off or to reconfigure it), you must wait for 
all active users of the disk to release the disk. 

You can try several methods to get users off the disk: 

• Move files from one member of a family to other members of the family by using the 
system command RES PK < unit number> . 

• Remove a duplicated directory by using the system command DD-. 

• Discontinue the MCP RY procedure by using the system command CL PK < unit 
number>. 

However, it is not always possible to locate and terminate all users of a disk. For 
instance, the RES command cannot move files that are in-use, DD- is rejected if the 
system is using the disk as the basepack, and members of the halt!load and DL JOBS 
family are always in-use. 

If it is absolutely necessary to remove a disk from use by the system, issue the system 
command SV PK < unit number> and halt!load the system. This technique works for all 
disks except for the halt/load disk and diskS that contain active bootcode files. 

Another method for taking a pack offline is to create a mirror copy of the pack and 
then to release the original pack. This method is the least disruptive to the operational 
environment. For further information, refer to Section 10 in this guide. 

Saving Disk Units 

2-6 

The system command SV PK < unit number> does not test the in-use status of the disk 
and does not place the disk completely ofHine. That is, system and program usage of an 
online disk that is subsequently saved with the SV command is not stopped. However, . 
attempts to open files and use the disk after it has been saved can be stopped. 

You can perform the following commands on a disk that is saved with the SV command: 

• RC (Reconfigure Disk) 

• LB (Relabel Pack or HCU) 

• PG (Purge) 

• CLOSE (Close Pack) 

Sometimes you must reconfigure or change the status of a disk before the-system can 
bring the disk online. For example, if the disk is part of the halt!load family and the 

8600 0668-000 



Disk Initialization and Operation 

disk is turned on, an RC system command cannot be executed for the disk. As soon as 
the disk becomes ready, the system reads its label and recognizes that it is part of the 
halt/load family; disks in the halt/load family are always considered to be in-use. 

Use the following procedure to reconfigure or change the status of a disk that is part of 
the halt/load family: 

1. Issue the system command SV PK < unit number> for the unit. 

2. Turn on the disk drive or haltJIoad the system. 

3. Issue the RC (or LB or PG) command for the disk as needed. 

. 4. Issue the system command RY PK < unit number> for the unit. 

Using the RES, XD, and SQUASH Commands 
You can use the system commands RES PK < unit number>, SQUASH PK < family 
name> , and XD PK < unit number> to change and control the physical location (sector 
addresses) of disk file areas. The RES PK < unit number> command moves the 
areas of disk files away from a designated section. The SQUASH PK < family name> 
command moves the areas of disk files together so that the unallocated space on the disk 
is consolidated. The XD PK < unit number> command marks the designated section 
of the disk as not to be used. For example, you can use the XD command if you suspect 
that a section of a disk is defective and prone to parity errors. 

Only one RES, XD, or SQUASH procedure can be active on the system at any particular 
time. 

Moving Allocated Disk File Areas with the RES and XD Commands 

You can use the RES (Reserve Disk) command to move disk files from a particular 
section of a disk volume or from the entire disk volume to other parts of the disk or 
other disks on the family. After the RES command has moved all the allocated files 
from the designated section, it marks the section of disk or disk volume with the status 
specified implicitly or explicitly in the RES command. 

The RES procedure cannot ordinarily move files that are actively being used by 
programs or the system. However, the RES procedure often can move certain in-use 
files, such as code files and directories. During its processing, the RES procedure reports 
each in-use file that it cannot move with one of the following messages: 

PK<unit number> WAIT ON PERMANENT FILE <file name> 

PK<unit number> WAIT ON TEMP FILE <file name> 

PK<unit number> WAIT ON TEMP FILE <file name>, CREATED BY JOB<mix no> 

PK<unit number> WAITING FOR JOB/SESSION <mix number> 

Then the RES procedure waits either for some operator action such as DS or QT or for 
the file to be closed by the programs that are using it. 

8600 0668--000 2-7 



Disk Initialization and Operation 

2-8 

Designate the section of the disk to be cleared by the RES command in one of the 
following three ways: 

• As a specific disk sector address range 

• As an entire family member or disk volume 

• On memory disks, as the section of disk controlled by specific lock-out switches 

Information follows that explains how to perform each option. 

When the entire disk volume is to be cleared, a special situation exists. Areas allocated 
with the FAMILYINDEX attribute or the SINGLEPACK attribute on that family 
member cannot be moved to other members of the family. The RES procedure issues 
messages that list all files in the F AMILYINDEX and SINGLEPACK set that cannot be 
moved: 

PK<unit number> FAMILYINDEX FILE BLOCKING RESERVE <file name> 
PK<unit number> SINGLEPACK FILE BLOCKING RESERVE <file name> 

The files listed in the above message format would have to be removed from the disk 
before the RES procedure could complete. 

After the RES procedure moves all file areas out of the designated disk section, the 
system establishes the disposition of the disk or section that is reserved in one of the 
following three ways, based on the action that you take: 

• If you use an ADDRESS, SECTOR, or SEGMENT specification in the RES 
command, the system covers the section of reserved disk with a BADDISK file. The 
reserve procedure performs the XD command on the reserved section of the disk. 

The system does not use sectors of disk covered by a BADDISK file to allocate disk 
files. Using RES with an ADDRESS, SECTOR, or SEGMENT specification is a good 
choice if you suspect that a section of disk is defective and is prone to I/O parity 
errors. 

Using RES with an ADDRESS, SECTOR, or SEG:MENT specification differs from 
the XD (Bad Disk) command in one respect. RES automatically moves files from 
the designated section of disk, but XD only succeeds if no files are allocated in the 
designated section to begin with. 

An eliminated section can be returned for use by removing the BADDISK/ < file 
name> file that covers it. For example, the command RES PK97 SEGMENT 3020 
FOR 10 moves any file areas out of the sector range 3020-3029 and then creates a 
BADDISK file that covers that area with the following file name: 

BADDISK/FMLYINX2/UNIT97/ADB68H. 

You can use the RES command to delete a continuation pack from a family by 
designating the address range that covers the entire disk. The following command is 
an example: 

RES PK<unit number> SEGMENT 28 FOR u<size of disk> - 28" 

8600 0668-000 



Disk Initialization and Operation 

The first 28 segments contain the disk label and cannot be reserved. ,After you 
delete the disk from the family, you should purge the disk by using the PG command. 
You can then reconfigure the disk into another family. If you skip the purge step 
after the RC command is executed, the disk will again contain the BADDISK file that 
covers the entire volume that was created by the original RES command. 

• If you want to reserve the entire disk volume (no ADDRESS, SECTOR, or 
SEGMENT specifications exist) and you designate AS MAINT, the reserve 
procedure marks the disk unit as saved. 

The system moves all disk file areas except BADDISK areas from the disk volume 
to other volumes in the family and marks the unit as saved. You can use this 
particular form of the RES command for one of several reasons: 

Use RES PK < unit number> AS MAINT to terminate usage of the disk so that 
you can close it (with the CLOSE command) and unload it so that you can load 
another disk volume onto the unit. 

Use AS MAINT prior to running maintenance tests on the unit. That is, reserve 
the unit with the system command UR (Unit Reserved), and then the peripheral 
test driver (PTD) can use the disk. 

You can make the unit and disk volume available for use again by issuing the system 
command RY PK < unit number>. For example, the command RES PK97 AS 
MAINT moves all file areas on pack 97 to other disks in the same family (a base pack 
of a family can never be reserved as MAINT) and marks the unit as saved. 

Consolidating Disk Space with the' SQUASH Command 

Often, files on a disk are continually being added, expanded, or removed. As the files 
on a disk are changed, it is not always possible to fit areas of new files between areas of 
other files; there might be only small areas available between in-use areas. If a large 
number of files (especially many smaIl files) are on the disk, a large number of unused 
sectors might be scattered throughout the disk. The total number of available sectors 
could be large, but the system might not be able to use those sectors, b~use contiguous 
groups of secto~s are too small for an area of ~ file to be stored there. This situation is 
known as checkerboarding. 

The SQUASH (Consolidate Disk Allocation) system command can be used to consolidate 
files and to increase the number of contiguous usable sectors. The SQUASH operation 
moves allocated areas of files from one place to another so as to reduce the amount of 
checkerboarding. That is, the SQUASH procedure tries to move or group allocated 
areas of files to one or two parts of the disk and thereby arrange them so that the 
unallocated sectors on the disk are contiguously grouped together. This operation 
facilitates allocating new areas and files on the disk because after a SQUASH operation, 
it is more likely that large groups of contiguous sectors (~ required for files that specify 
large area sizes) will be available. 

The SQUASH procedure is bypassed if one of the following conditions exists: 

• There is not enough space on the disk (unallocated disk sectors) to make the 
SQUASH operations useful. 

• The niajority of available space on the disk is already grouped together. 

8600 0668-000 2-9 



Disk Initialization and Operation 

2-10 

Either of these conditions causes SQUASH to issue the following message: 

PK<unit number> DISK SPACE ALREADY CONSOLIDATED, SQUASH BYPASSED 

Otherwise, the SQUASH operation proceeds to analyze the location of allocated areas 
on the disk and attempts to move some of those allocated areas so as to group together 
the available sectors on the disk. However, the SQUASH procedure cannot successfully 
move all allocated areas. In particular, SQUASH" does not try to move areas that belong 
to the following files: 

• XD files, that is files with FILEKIND = BADDISK These are not true files but are 
place holders used by the system to mark or prevent usage of sectors on the disk 
that are suspected of being faulty. 

• Files with very large AREASIZEs (greater than the largest available area on the disk 
prior to the beginning of the SQUASH procedure). The size of the largest available 
area can be displayed with the system command DU (Disk Utilization). SQUASH 
cannot move areas of a file unless it can find another available area in which the 
allocated area would fit. 

.• Files that are open and in-use at the time of the SQUASH operation. These files 
would include both permanent disk files (those whose names appear in the directory 
of the disk), temporary disk files, and WFLjob files (those whose names appear on 
the active DL JOBS family). Occasionally there are specific cases where SQUASH 
can sometimes move areas that belong to open, in-use files that include the following: 

SYSTEMDIRECTORY files 

SYSTEM/ACCESS or SYSTEM/CATALOG files 

The JOBDESC file 

The active MCP code file 

Code files 

The general restriction that SQUASH cannot move open, in-use disk files means that the 
SQUASH operation might not always be useful if it is employed at times when the disk 
contains many open and in-use files. 

If, prior to moving data, the SQUASH procedure determines that there are so many 
files blocking the operation that the procedure cannot increase the extent of the largest 
group of available sectors on the disk, the SQUASH procedure bypasses the disk with 
the following message: 

PK<unit number> DISTRIBUTION OF INUSE, XD, AND LARGE FILES MAKES 
SQUASH NOT FEASIBLE 

When the SQUASH operation is performed on a multidisk family, the system 
consolidates areas on the base pack first, and then consolidates areas on each 
continuation pack. Areas are not moved from one family member to another. 

The SQUASH operation is a time-consuming process, and Unisys suggests that you use 
SQUASH at night or at some other time when system usage is minimal. You can use the 
FILEDATA utility to produce a listing that shows the checkerboarding for a disk.; this 

8600 0668-000 



Disk Initialization and Operation 

listing shows the in-use portions of the disk and the unused space that surrounds those 
portions. You can also use the DU (Disk Utilization) system command to examine the 
space that is available on a disk family. Refer to the information on FILEDATA in the 
A Series System Software Utilities Operations Reference Manual for more information 
about FILEDATA. Refer to the A Series System Commands Operations Reference 
Manual for more information about the SQUASH and DU commands. 

8600 0668-000 2-11 



2-12 8600 0668-000 



Section 3 
Volume Library and Volume Directory 

The system supports two optional, independent subsystems that keep track of the status 
of tape volumes and disk volumes. These two subsystems store volume information in 
special records in the central catalog directory. 

In noncataloging installations, these records are stored in the SYSTEM/ACCESS 
directory. In cataloging installations, they are stored in the SYSTEM/CATALOG 
directory. 

One set of these records is called the volume directory. It exists only if the installation 
uses the system option SECOPT TAPECHECK=AUTOMATIC. The volume directory 
keeps track of the status of tape volumes only. 

The other set of records is called the volume library. It exists only if the installation runs 
with the system option OP + CATALOGING turned on. The volume library keeps 
track of the status of both tape and disk volumes. 

The volume directory and volume library keep track of only those tapes and disks that 
have been volumed - that is, tapes and disks that have been included in the volume 
directory or volume library. You include a tape or disk in the volume ,directory or library 
by executing a WFL VOLUME ADD statement for the tape or disk. In the command, 
you must specify the name of the volume, the attribute KIND (tape or disk), and the 
serial number of the volume as shown in the following example: 

VOLUME ADD SCRATCH (TAPE, SERIALNO = IIX55612 11
) 

After a tape or disk has been volumed, you cannot change its serial number with the 
system command SN (Serial Number) unless you first issue a WFL VOLUME DELETE 
statement to delete the entry for the tape from the volume library and directory. 
However, you can use the SN command to change the density of the volumed tape as 
long as you respecify the original serial number of the volume. 

Using Tape Security 
The volume directory is it data structure in the tape security subsystem. This directory 
stores information about tape volumes at your installation by tape serial number, and 
includes the followin~ information for each volumed tape: 

• Current volume name 

• Tape volume ownership 

• Tape file security attributes 

8600 0668-000 3-1 



Volume Library and Volume Directory 

The system uses the volume directory when it either readies or· purges a tape volume 
and when it opens a tape file for input or output. The tape volume directory is a feature 
that is available only with InfoGuard security-enhancement software. 

The tape volume directory has the following two sections: 

• The· data section contains data records that describe individual tape volume families. ' 

• The key section contains a structure used by the system to rapidly locate individual 
data records in the data section. 

You can use the TV (Tape Volume) system command to determine if a particular tape is 
volumed. You can also use the LISTVOL UME utility to generate a printer listing of all 
the volumes that are in the volume directory. For more information, refer to "Using the 
LISTVOLUME and LISTVOLUMELIB Utilities" later in this section. 

The system frequently changes volume directory entries to track the changing status of 
the tape version. An operator can issue commands to rebuild the volume directory if it 
becomes corrupted. If you designate SECOPT TAPECHECK = NONE, the system does 
not create, reference, or update the volume directory data structure. To have volume 
directory capability, you must enter the following command: 

SECOPT TAPECHECK=AUTOMATIC 

When you enter this form of the command, it does not become effective until the next 
time you halt/load the system. 

Volume Library 
The volume library is a component in the SYSTEM/CATALOG file that keeps track 
of all volumed disks and tapes used by the system. A volumed disk or tape is one for 
which a descriptive entry has been added to the volume library with the WFL statement 
VOLUME ADD. Note that disks and tapes often are referred to as volumes, whether 
or not they are entered in the volume library. The volume library contains an entry for 
each volumed disk or tape family. A multidisk family has only one entry. 

You can use the PV (print Volume) system command to determine if a particular disk or 
tape is volumed. You can also use the LISTVOLUMELIB utility to generate a printer 
listing of all the volumes that are in the volume library. For more information, refer to 
"Using the LISTVOLUME and LISTVOLUMELIB Utilities" later in this section. 

The system uses a special structure called the volume access structure table (VAST) to 
access volume library entries. The system handles the VAST automatically. 

How the System Handles Volumed Tapes and Disks 

3-2 

The information that follows describes how the system handles volumed tapes and 
volumed disks. 

8600 0668-000 



Volume Library and Volume Directory 

Handling Volumed Tapes 

The following subsections provide general information and an example procedure for 
handling volumed tapes. 

General Information 

For volumed tapes, the system automatically updates the volume library and the volume 
directory when you change the status of a.volume. When you purge a volumed tape 
with the PURGE (purge) system command or place a new file on the tape, the system 
automatically updates the volume library, the volume directory, or both. However, 
automatic updates such as these do not take place under the following conditions: 

• The tape is purged while cataloging or the tape security subsystem is not in use. 

• The tape is purged on another system. 

• A new file is stored on the tape while cataloging or the tape security subsystem is not 
in use. 

• A new file is stored on the tape while the tape is being used on another system. 

Example Procedure for Handling Volumed Tapes 

The following example procedure shows how a cataloging system or a tape security 
subsystem handles these tasks for volumed tapes: 

• Assigns a serial number to a new tape. 

• Enters the tape into the volume library, the volume directory, or both. 

• Adds a file to the tape. 

• Purges the tape. 

• Assigns a new serial number to the tape. 

In this example, the unit number of the tape drive on which the tape is mounted is 118, 
and the serial number of the tape is 555. The tape is a single reel family, so some system 
messages in this example contain #1 to indicate that this reel is the first (and, in this 
case, only) reel in the family. 

1. Use the SN (Serial Number) system command to purge the tape and assign the 
serial number 555: 

SN MT 118 555 

The system then displays the following messages on the ODT: 

8600 0668-000 

MT 118 WILL BE SN-ED 
MT 118 PURGED 

3-3 



Volume Library and Volume Directory 

3-4 

2. Use the WFL statement VOLUME ADD to place an entry for the tape into the 
volume library and the volume directory as a scratch tape: 

VOLUME ADD SCRATCH (KIND = TAPE, SERIALNO = 555) 

If you are using cataloging, the system then displays the following message on the 
ODT: 

VOLUME FAMILY SCRATCH (MT) [555] #1 ENTERED 

If you are using the tB;pe security subsystem, the system displays the following 
message on the ODT: 

VOLUME DIRECTORY ADD SCRATCH [000555] OK 

3. Use the WFL statement COpy to copy the file PAYABLE to the tape and change 
t.he name of the tape from SCRATCH to ACCOUNTS: 

COPY PAYABLE TO ACCOUNTS (SERIALNO = 555) 

The cataloging system then displays the following messages on the ODT: 

VOLUME FAMILY SCRATCH (MT) [555] #1 DELETED 
VOLUME FAMILY ACCOUNTS (MT) [555] #1 ENTERED 

The tape security subsystem does not display a message when a tape is changed. 

4. Use the PV (print Volume) or TV (Type Volume) system command to display 
information from the volume library or volume directory respectively about tape 
555: 

a Enter the following syntax for the PV command: 

PV MT 555 

The system then displays the following information from the volume library on 
theODT: 

-----VOLUME LIBRARY ENTRY FOR (MT) [000555]-----

SERIALNO 000555, #0001, PETAPE 
FAMILY NAME: ACCOUNTS 
FAMILY CREATED ON: 3/27/85 
FAMILY EXPIRATION DATE: 4/27/85 
FAMILY CREATION SITE: 281 
ONE MEMBER IN THIS FAMILY 

b. Enter the following syntax for the TV command: 

TV MT 555 

8600 0668-000 



Volume Library and Volume Directory 

The system then displays the following information from the volume directory 
on theODT: 

-----VOLUME DIRECTORY ENTRY FOR (MT) [000555]-----

FAMILY NAME: ACCOUNTS 
FAMILY OWNER: * 
FAMILY CREATED ON: 3/27/85 
FAMILY EXPIRATION DATE: 4/27/85 
FAMILY CREATION SITE: 281 
FAMILY VOLUME TYPE: LIBRARY MAINTENANCE 
UPDATE TIMESTAMP: TUESDAY JUNE 03, 1986 (86154) AT 10:20:30 
SECURITY: PRIVATE - USAGE: READ/WRITE 
GUARDFILE: NONE 
FAMILY STRUCTURE #1 ONLY 

(MT) [000555] #0001, TEMPORARY, NOT-RESTRICTED 

5. Use the PG (purge) system command to purge the tape (the PG command uses the 
unit number, 118, not the serial number, 555): 

PG MT 118 

The system purges the tape, automatically updates the volume library and/or 
volume directory entry to indicate that the tape is now a scratch tape, and displays 
the following cataloging messages on the ODT: 

VOLUME FAMILY ACCOUNTS (MT) [555] #1 DELETED 
VOLUME FAMILY SCRATCH (MT) [555] #1 ENTERED 
MT 118 PURGED 

The tape security subsystem does not display any messages when the volume 
directory entry for the tape is updated in this manner. 

6. Use the SN (Serial Number) system command to purge the tape and attempt to 
assign the serial number 666: 

SN MT 118 666 

Instead of purging the tape, the cataloging system displays the following message on 
theODT: 

MT 118 VOLUME DELETE REQUIRED 

If you are using the tape security subsystem, the following message is displayed: 

VOLUME DIRECTORY MT 118 SCRATCH [000555] NOT SNED, 
REQUIRES VOLUME DELETE 

The system does not allow the serial number to be changed until the existing volume 
library entry and/or volume directory entry for the tape has been deleted. 

7. Use the WFL statement VOLUME DELETE to delete the existing volume library 
entry for the tape: 

VOLUME DELETE SCRATCH (KIND = TAPE, SERIALNO = 555) 

8600 0668-000 3-5 



Volume Library and Volume Directory 

The cataloging system then displays the following message on the ODT: 

VOLUME FAMILY SCRATCH (MT) [555] #1 DELETED 

If you are using the tape security subsystem, the following message is displayed: 

VOLUME DIRECTORY DELETE SCRATCH [000555] OK 

8. Enter the SN command again to purge the tape and assign the serial number 666: 

SN MT 118 666 

The system then displays the following messages on the ODT: 

MT 118 WILL BE SN-ED 
MT 118 PURGED 

9. Use the VOLUME ADD statement to place an entry for the tape back into the 
volume library and volume directory: 

VOLUME ADD SCRATCH (KIND = TAPE, SERIALNO = 666) 

The cataloging system then displays the following message on the ODT: 

VOLUME FAMILY SCRATCH (MT) [666] #1 ENTERED 

If you are using the tape security subsystem, the following message is displayed: 

VOLUME DIRECTORY ADD SCRATCH [000666] OK 

Handling Volumed Disks (Volume Library Only) 

The following subsections provide general information and an example procedure for 
handling volumed disks. 

Genera I Information 

3-6 

The system handles volumed disks differently from volumed tapes. When you want 
to rename a disk or disk family, use the RC (Reconfigure Disk) or LB (Relabel Pack) 
system command. When you want to purge the files from a disk or disk family, use the 
PG (Purge) system command. However, when you use these commands on a volumed 
disk, first use the WFL statement VOLUME DELETE to remove the entry for the disk' 
family from the volume library. Mter you reconfigure or rename the disk, you can place 
a new entry for it into the volume library with the WFL statement VOLUME ADD. 

To use the VOLUME ADD statement with a multipack disk family, designate the name 
of the family and the serial number of the pack with the family index number 1. Do not 
use the VOLUME ADD statement with the other packs in the family, even if the unit 
bearing family index number 1 is not currently online. 

Special handling might be necessary for the family serial number of a volumed disk 
family with duplicated directories that is created with the system command DD 
(Directory Duplicate). The serial number of the first member of the family identifies 
whether the family is volumed. (The VOLUME ADD and VOLUME DELETE 

8600 0668-000 



Volume Library and Volume Directory 

commands issued for other disks in the family do not affect the status of the family; the 
system ignores those entries.) 

Even if you remove the directory from family member 1 with a DD- command, you 
should still use the serial number of family member 1 when you issue a VOLUME ADD 
statement for the family. If you delete from a family the first disk in that family by 
issuing a DD- command and you later reconfigure that first disk as another family, the 
original serial number of that disk remains the serial number that is used to identify 
the family in the volume library. The serial number of the original family member 1 is 
displayed as the second serial number in the ODT displays for the system commands 
PER PK and OL PK < unit number>. You can use these commands to determine the 

. serial number to use in VOLUME commands for the family. 

You should observe a special precaution if you delete from the family the first disk in 
that volumed family and later reconfigure the disk as (or into) a new disk family. If 
the original family is to continue to be usable and volumed, you should not use the 
serial number of the old family again. This precaution is necessary so that the catalog 
information for the old family can remain linked to that family with the original family 
serial number. So, if you delete and reconfigure the first disk in a volumed family, you 
should give the disk a new serial number. 

Example Procedure for Handling Volumed Disks 

The procedure that follows illustrates how to reconfigure a disk, add it to the volume 
library, and change the name of the disk. In this example, the family name of the disk 
is SHIPPING, the serial number of the disk is 032785, and the unit number of the disk 
drive on which the disk is mounted is 211. The SmPPING disk is the only member of 
the family, so some system messages in this example contain #1 to indicate that this disk 
is the first (and, in this case, only) disk in the family. 

1. Use the RC (Reconfigure Disk) system command to reconfigure and name the disk: 

RC PK 211 NAME=SHIPPING SERIAL=032785 

2. Use the WFL statement VOLUME ADD to enter SHIPPING into the volume 
library: 

VOLUME ADD SHIPPING (SERIALNO=032785, KIND = PACK) 

The system displays the following message on the ODT: 

VOLUME FAMILY SHIPPING (PK) [032785] #1 ENTERED 

3. Use the PV (Print Volume) system command to display information from the volume 
library about disk 032785: 

PV PK 032785 

8600 0668-000 3-7 



Volume Library and Volume Directory 

The system then displays the following information on the ODT: 

-----VOLUME LIBRARY ENTRY FOR (PK) [032785]-----

SERIALNO 032785, #0001, PACK, BASE 
FAMILY NAME: SHIPPING 
FAMILY CREATED ON: 3/27/85 
FAMILY CREATION SITE: 281 
ONE MEMBER IN THIS FAMILY 

4. Use the system command CLOSE (Close Pack) to place the family offline: 

CLOSE PK211 

The system then displays the following message on the ODT: 

PK211 UNIT CLOSED 

5. Use the WFL statement VOLUME DELETE to delete the existing volume library 
entry for the disk: 

VOLUME DELETE SHIPPING (KIND = PACK,.SERIALNO = 032785) 

The system then displays the following message on the ODT: 

VOLUME FAMILY SHIPPING (PK) [032785] #1 DELETED 

6. Enter the following LB (Relabel Pack) command syntax to change the disk name to 
INVENTORY:. 

LB PK211 NAME = INVENTORY OLDNAME = SHIPPING 

The system then displays the following message on the ODT: 

PK211 UNIT RELABELLED 

7. Use the WFL statement VOLUME ADD to enter INVENTORY into the volume 
library: 

VOLUME ADD INVENTORY (KIND = PACK, SERIALNO = 032785) 

The system then displays the following message on the ODT: 

VOLUME FAMILY INVENTORY (PK) [032785] #1 ENTERED 

Using the LISTVOLUME and LISTVOLUMELIB Utilities 

3-8 

LISTVOLUME is a utility in InfoGuard that reports on the status of volumes in both the 
volume library and the volume directory. Only privileged users can use this utility. 

The LISTVOLUMELIB utility reports on the status of volumes in the volume library 
only. 

To obtain information about the volume library, the CATALOGING option must 
be designated (OP + CATALOGING). To obtain information about the volume 

8600 0668-000 



Volume Library and Volume Directory 

directory your installation must have set the SEC OPT T APECHECK option equal to 
AUTOMATIC. 

The following subsections provide examples of the parameters that you can use to run 
these utility programs. Note, however, that they might require a large amount of disk 
space, depending on the size of the volume library or the volume directory. 

Running the LISTVOLUME Utility 

To run the LISTVOLUME utility, enter RUN SYSTEM/LISTVOLUME followed by one 
of the parameters shown in the examples that follow. 

If you use one of the following examples, the utility reports on whichever structures 
exist on the current system (volume library or volume directory). If both exist, both are 
reported. 

RUN SYSTEM/LISTVOLUME (""); 
RUN SYSTEM/LISTVOLUME (" "); 
RUN SYSTEM/LISTVOLUME ("PRINT"); 

To report only volume library entries, use the following WFL statement: 

RUN SYSTEM/LISTVOLUME e'PRINT VOLUMELIB"); 

To report only volume directory entries, use the following WFL statement: 

RUN SYSTEM/LISTVOLUME ("PRINT VOLUMEDIR"); 

To report entries for both the volume library and the volume directory, use the following 
WFL statements: 

RUN SYSTEM/LISTVOLUME ("PRINT VOLUMELIB, VOLUMEDIR"); 
RUN SYSTEM/LISTVOLUME ("PRINT VOLUMEDIR, VOLUMELIB"); 

If you enter the previous example and your installation does not have both the volume 
library and the volume directory, the system displays an error message to let you know 
that only one structure exists. 

The report generated for the volume library contains the following 'sections: 

• The date that the LISTVOLUME utility was run and the disk unit number that 
contains the volume library structure. 

• Scratch volumes, sorted by serial number, within type. 

• Expired volumes, sorted by serial number within type (DISK, TAPE, PACK, 
PETAPE). The LISTVOLUME utility computes the expiration date of each volume 
by using the SA VEFACTORand CREATIONDATE attributes of each volume. 

• Valid volumes that contain files, sorted by serial number within type. These 
volumes have not yet expired and are assumed to have valid file data 

8600 0668-000 3-9 



Volume Library and Volume Directory 

• Expired volumes, sorted by title. The following information is printed for each 
volume: . 

Volume name= KIND = <disk, tape, pack, petape> 

CREATED: <creation date> 
EXPIRES: <expiration date> 
BASE or EMPTY 
CREATED ON SYSTEM: <system serial number> 

[volume serial number] reel number, ••• 

• Valid volumes, sorted by title. The reporting format is as follows: 

Volume name= KIND = <disk, tape, pack, petape> 

CREATED: <creation date> 
EXPIRES: <expiration date> 
BASE or EMPTY 
CREATED ON SYSTEM: <system serial number> 

[volume serial number] reel number, ••• 

• Volume library statistics. This part of the report shows disk space consumed by the 
volume library and used by the disk. The format is as follows: 

nnnn=ALLOCATED SEGMENTS 
nnnn=AVAILABLE SEGMENTS 
nnnn=VOLUME BLOCKS 
nnnn=VOLUME ENTRIES 
nnnn=SCRATCH ENTRIES 
nnnn=CONTINUATION BLOCKS 
nnnn=BASE ENTRIES 

The report generated for the volume directory contains the following sections: 

• Scratch volumes, sorted by serial number within type. 

• Volumes with the MATCHONLYSERIALNO attribute, sorted by serial number 
within type. These volumes are recognized by serial number alone; the system does 
not check the family names. 

• Expired volumes, sorted by serial number within type (TAPE or PETAPE). The 
LISTVOLUME utility computes the expiration date of each volume by using the the 
SA VEFACTOR and CREATIONDATE attributes of each volume. 

• Valid volumes that contain files, sorted by serial number within type. These 
volumes have not yet expired and are assumed to have valid file data. . 

• Scratch volumes, sorted by family. The system lists all the scratch volumes. 

3-10 8600 0668-000 



Volume Library and Volume Directory 

• Volumes with the MATCHONLYSERIALNO attribute, sorted by title. These 
volumes are recognized by serial number alone. The display format is as follows: 

Volume name KIND = <tape, petape> 
CREATED: <creation date> 
EXPIRES: <expiration date> 
BASE or EMPTY 
CREATED ON SYSTEM: <system serial number> 

[volume serial I] reel I, •.• 

• Expired volumes sorted by title. The following is a sample layout: 

TEST 
(fami ly 
name) 

FAMILY OWNER: USER (usercode) 
CREATION DATE: SUNDAY MAy 18, 1987 (87138) 
EXPIRATION DATE: SUNDAY MAY 18, 1987 (87138) 
CREATION SITE: 9 
FAMILY TYPE: LIBRARY MAINTENANCE 
UPDATE TIMESTAMP: MONDAY MAY 19, 1987 (87139) 

AT 14:02:17 
SECURITY: PUBLIC - USAGE: IN 
GUARDFILE: S1/S2 ON XYZPACK 

(PETAPE) [000123] 10001 TEMPORARY, RESTRICTED 
(TAPE) [000456] #0002 TEMPORARY, NOT-RESTRICTED 

• Valid volumes sorted by title. The reporting format is identical to the format for 
expired volumes sorted by title. 

• Volume directory statistics. These statistics summarize the total of various volume 
entries as follows: 

nnnn=VOLUME ENTRIES 
nnnn=SCRATCH ENTRIES 
nnnn=MATCHONLYSERIALNO ENTRIES 
nnnn=MISSING ENTRIES 
nnnn=BASE ENTRIES 

Running the LISTVOLUMELIB Utility 

If your installation has a volume library, the LISTVOLUMELIB utility reports the 
status of all the volumes in the library. To run the program, simply enter a WFL RUN 
SYSTEM/LISTVOLUMELIB statement. The report generated for the volume library 
contains the following sections: 

• The date that the LISTVOL UMELIB utility was run and the disk unit number that 
contains the volume library structure. 

• Scratch volumes, sorted by serial number within type. 

• Expired volumes, sorted by serial number within type (DISK, TAPE, PACK, 
PETAPE). The LISTVOLUMELm utility computes the expiration date of each 
volume by using the SA VEFACTOR and CREATIONDATE attributes of each 
volume. 

8600 0668-000 3-11 



Volume Library and Volume Directory 

3-12 

• Valid volumes that contain files, sorted by serial number within type. These 
volumes have not yet expired and are assumed to have valid file data 

• Expired volumes, sorted by title. The following information is printed for each 
volume: 

Volume name= KIND = <disk, tape, pack, pet ape> 

CREATED: <creation date> 
EXPIRES: <expiration date> 
BASE or EMPTY 
CREATED ON SYSTEM: <system serial number> 

[volume serial number] reel number, ••• 

• Valid volumes, sorted by. title. The reporting format is as follows: 

Volume name= KIND = <disk, tape, pack, petape> 

CREATED: <creation date> 
EXPIRES: <expiration date> 
BASE or EMPTY 
CREATED ON SYSTEM: <system serial number> 

[volume serial number] reel number, ••• 

• Volume library statistics. This part of the report shows disk space consumed by the 
volume library and used by the disk. The format is as follows: 

nnnn=ALLOCATED SEGMENTS 
nnnn=AVAILABLE SEGMENTS 
nnnn=VOLUME BLOCKS 
nnnn=VOLUME ENTRIES 
nnnn=SCRATCH ENTRIES 
nnnn=CONTINUATION BLOCKS 
nnnn=BASE ENTRIES 

8600 0668-000 



Section 4 
Archiving Disk Files 

The archive subsystem is designed to assist you in protecting the disk files of your 
installation, and in using your disk and tape resources more efficiently. This subsystem 
enables you to copy files to backup tapes, to transfer archived files between backup 
tapes, to restore archived files to disk, and to maintain a record of the names, locations, 
and attributes of archived files in archive directories. The archive subsystem is 
available to anyone using an A Series system, provided he or she has the required 
security access privileges. 

The discussions in this section describe features and commands of the archive subsystem 
and how you can use them. After reading this section you will be able to do the 
following: 

• Identify the components of the archive subsystem. 

• Identify the basic functions performed by each of the archive subsystem commands, 
and use the archive subsystem commands. 

• Find information on backup files in archive directories. 

• U~derstand the primary function of the archive support library, and how you can 
modify it to suit your installation's needs. 

The features and capabilities provided by the archive subsystem are compared with 
those of the catalog subsystem in Section 6 of this guide. 

Components of the Archive Subsystem 
The archive subsystem consists of three main components. These components include 
commands that perform library maintenance operations, archive directories for each 

I' online disk family, and a support library that determines whether or not files can be 
copied by an archiving operation. Each of these components is described, generally, as 
follows: 

• You can use archive subsystem commands to copy disk files to backup tapes, to 
restore backup files to disk, and to merge backup files from many tapes to a single 
backup tape or tape set. 

• Archive directories are disk directories that record the names, locations, and 
attributes of disk files that have been copied through WFL archive operations to 
tape. The archive record for any particular disk file keeps track of the four most 
recent archive backups of the file. The archive subsystem maintains a separate . 
archive directory for each online disk directory. These directories reside on the DL 
catalog family. System commands you can use to manipulate archive directories are 
described under "Reviewing or Changing File Information in the Archive Directory" 
later in this section. 

8600 0668-000 4-1 



Archiving Disk Files 

• The support library is used by the archive subsystem to control which files are copied 
during an archive operation. That is, the archive support library can reject files 
the system presents to it for archive operations, based on various selection criteria. 
Consequently, the support library is sometimes called the selector library. The 
standard symbolic file for the selector library is the *SYMBOL/ARCHIVESUPPORT 
file. The standard code file for this library is the *SYSTEM/ARCHIVESUPPORT 
file. Selector libraries are discussed under "Modifying the Archive Support Library" 
later in this section. ' 

AUTORESTORE Task Attribute 

Another feature of the archive subsystem is called the AUTO RESTORE task attribute. 
This feature enables the archive subsystem to automatically reload a copy of an archived 
file from a backup tape to disk if a program encounters a "NO FILE" condition during an 
archive file search. However, the archive subsystem can reload the file if the following 
conditions are satisfied: 

• The job requesting the missing file and the file itself have the same usercode. 

• A backup record for the missing file exists in the archive directory for the disk family. 

• The AUTORESTORE task attribute is set to TRUE. 

You can control the AUTORESTORE task attribute with the AUTORESTORE system 
option. Following are the valid values for the AUTORESTORE system option: 

Value 

YES 

DO NTCARE 

NEVER 

Function 

Sets the default setting of the AUTORESTORE task attribute to TRUE. 

Sets the default setting for the AUTORESTORE task attribute to FALSE. 

Prevents the ARCHIVE/AUTORESTORE processes from starting, no 
matter what the value of the AUTORESTORE task attribute is. 

If a "NO FILE" condition occurs and your installation or task is not using the 
AUTORESTORE feature, you see messages identifying the tape on which the missing 
file resides. You can respond by loading the appropriate tape and issuing a WFL COpy 
statement. This process is described in greater detail in the A Series System Operations 
Guide. 

Note: If you have removed a file from disk, but you have not purged 
the backup records that refer to it from the archive directory, the 
AUTORESTORE process can restore that file to disk, provided a copy 
of it still exists on the archive backup medium. Therefore, if you 
want to remove an archived file permanently, you must also purge 
its records from the archive directory with the ARCHIVE PURGE 
command. 

4-2 8600 0668-000 



Archiving Disk Files 

Files and File Searches 

The archive subsystem uses resident and nonresident disk files in its operations. 

A disk file is recognized as nonresident in the following context: 

• The flat directory for its disk family does not include a file header for the file. 

• The archive directory contains at least one backup record for the file. 

A disk file is recognized as resident if it resides on disk; this is so even if the archive 
directory does not include a backup record for the file. 

Note: Operations initiated by the WFL statements REMOVE, CHANGE, 
CpPY, and ADD do not affect nonresident, archive backup copies of 
files in any way. 

Whenever the archive subsystem creates a backup copy of a file or transfers an archived 
file from one backup tape to another, it creates or updates a record of the transaction 
in the archive directory. This action enables the archive SUbsystem and you to locate 
nonresident backup copies of files. Therefore, the presence or absence of records in the 
archive directory affects the file search processes the archive subsystem performs. 

When a program attempts to open an existing disk file, when a WFL job executes either 
a RUN or a PROCESS statement, or when a program attempts library linkage, the disk 
subsystem begins a search operation to locate the file that the operation requests. This 
process is known as a multiple directory search and occurs under any of the following 
circumstances: 

• The task that is searching for a file runs under a usercode, but it requests a file 
without explicitly specifying its usercode in parentheses or the asterisk (*) usercode. 
In this case, the system searches for files in the directory that is associated with the 
usercode of the requesting task. If the specified file is not found, a second search 
takes place in the asterisk (*) directory. 

• The task is running with a family substitution specification that includes an 
OTHERWISE clause. This causes the first search to occur on the primary substitute 
family name. If the search is unsuccessful, a second search occurs on the alternate 
substitute family name. 

• Both conditions listed above apply. In this case, the search for a disk file is 
performed in the following order: 

The primary family under the usercode directory of the requesting task is 
searched. 

The primary family under the asterisk (*) directory is searched. 

The alternate family under the usercode directory of the requesting task is 
searched. 

The alternate family under the asterisk (*) directory is searched. 

This process is known as a four-way search. If at any point in the search the file is 
found, the process stops and the archive subsystem returns the found file. 

8600 0668-000 4-3 



Archiving Disk Files 

If the disk subsystem discovers an archive backup record for a file at anytime during 
a search, the search process terminates, and a "NO FILE" condition results. If the 
AUTORESTORE feature is enabled for the task, the disk subsystem discovers an 
archive reference to a file, and the system is not trying to locate a library code file, the 
system responds by reloading a copy of the file to the disk from the backup tape. 

Using Archive Subsystem and WFL Statements 

4-4 

Collectively, the archive subsystem statements perform the following actions: 

• Create backup copies of resident disk files. 

• Free disk space for other uses. 

• Merge archive backup files onto a single backup tape or tape set. 

• Restore backup files to disk. 

• Purge records from the archive directory of a disk family. 

You can enter the archive subsystem statements at an ODT, or you can include them as 
statements in WFL jobs. In most instances, you probably issue the archive statements 
through WFL jobs. Therefore, these statements are referred to as WFL statements 
throughout the rest of this section. 

The names of the archive subsystem statements and the functions they perform are 
summarized in Table 4-1. In many installations, use of these statements on files under 
usercodes other than your own is limited to those whose security access is privileged. 
However, a WFL job that is started at an aDT without a usercode can run these 
statements as well. . 

Table 4-1. Archive Subsystem Statements 

Statement Name 

ARCHIVE FULL, ARCHIVE 
DIFFERENTIAL, and ARCHIVE 
INCREMENTAL 

ARCHIVE MERGE 

ARCHIVE PURGE 

ARCHIVE RESTORE and 
ARCHIVE RESTOREADD 

ARCHIVE ROLLOUT 

Description of Function 

Copy resident disk files to library maintenance tapes. 

Merges files from one or more archive backup tape? to a 
single tape or tape set. 

Removes the backup records for specific files or directories 
from the archive directory of the specified disk family. This 
statement does not affect resident disk files in any way. 

Restore files that have been backed up through the archive 
subsystem from library maintenance tapes. 

Selects and copies disk files to backup tape, and then 
removes the original disk files from disk. This statement is 
intended to free disk space for other uses. 

8600 0668-000 



Archiving Disk Files 

Except for the ARCHIVE RESTORE and ARCHIVE RESTORE ADD statements, all 
of the statements shown in Table 4-1 cause the archive subsystem to modify records in 
the archive directory of the specified disk family. More information on archive records is 
provided in this section under "Reviewing or Changing File Information in the Archive 
Directory." Also, the actual layout of the archive records is presented in Appendix A of 
this guide. 

The following discussions provide explanations and examples of each of the WFL 
. statements. Railroad syntax diagrams of these statements are not provided in this guide. 
If you need complete syntax information, with full explanations of the various statement 
options and attributes, refer to the A Series Work Flow Language (WFL) Programming 
Reference Manual. To find examples of general operations you can perform through the 
archive subsystem, refer to the A Series System Operations Guide. 

ARCHIVE Backup Statements 

These statements copy resident disk files to a backup tape. You can use these 
statements to back up some or all of the disk files on a family; the number of files the 
archive subsystem selects for backup depends on which of the three statements you use. 
In any case, you can use the backup tape files created by this statement as input to the 
ARCHIVE MERGE, ARCHIVE RESTORE, and ARCHNE RESTORE ADD statements, 
and to the COPY and ADD WFL statements. 

You can use these statements as you would use ordinary library maintenance commands 
to copy files from disk to tape .. That is, first you specify a list of file and directory 
names that you want to be copied and then you specify the name of the disk family and, 
optionally, the output tape name. When the system has accepted the file and directory 
names you specify, the system locates the files and decides which of them to copy. This 
decision is based on the form of the ARCHIVE backup statement you have used. 

The functions performed by each of the three forms are described as follows: 

• The ARCHIVE FULL statement copies all resident disk files in the named family to 
one or more backup tapes. 

• The ARCHIVE DIFFERENTIAL statement copies to one or more backup tapes 
the resident disk files that have been changed or added to the family since the last 
ARCHIVE FULL statement was executed. 

• The ARCHIVE INCREMENTAL statement copies to one or more backup tapes 
only those resident disk files that have been changed or added since the last archive 
backup procedure was performed. In contrast to the ARCHIVE DIFFERENTIAL 

. statement, this statement does not copy files solely on the basis of the last full 
archive operation. 

The selection for an archive backup uses three steps: 

1. You specify the list of files, directory names, or both that are to be copied. 

2. The system does not select resident files for backup if you specify the 
DIFFERENTIAL or INCREMENTAL option and the appropriate backup files 
already exist. 

8600 0668-000 4-5 



Archiving Disk Files 

3. The archive support library determines which of the candidate files can and cannot 
be archived to tape. 

The standard support library resides in the SYSTEM/ARCHIVESUPPORT file. For 
each file it accepts for backup, it returns an "OK TO COPY" value. If your installation 
has compiled its own selector support library, you can use library equation to direct the 
file selection process through that library. Custom-tailored libraries of this kind are 
described in greater detail under "Modifying the Archive Support Library" later in this 
section. 

As each file is copied to tape, the archive subsystem creates or updates a record in the 
archive directory of the associated disk family. The main function of this directory is to 
record the names and locations of files you have archived on tape. If your installation 
is using the catalog subsystem and you copy a cataloged file from a volumed disk to 
an archive tape, the archive process creates two backup records: one for the archive 
directory, and one for the catalog. 

If you do not specify a disk family name in an archive backup statement, the archive 
subsystem backs up each online disk family. The files for each family are copied to a 
separate backup tape. If you do not specify the name of the backup tape to which you 
are archiving the files, the archive subsystem assigns one for you. The name consists of 
the first 12 characters of the disk family name, and the current year and day (in the form 
YYDDD). 

Examples of ARCHIVE Backup Statements 

4-6 

The examples that follow show archive backup statements that use the various syntax 
options. In all cases, the archive subsystem assumes that the disk files it copies are 
on disk pack media. A syntax error results if you identify the source medium as 
KIND = TAPE, or assign the SECURITYTYPE, SECURITYUSE, or F AMILYOWNER 
attributes in the FROM clause of an archive statement. 

Example 1 

This example creates archive backup copies of all resident files under the KATZ usercode 
on the disk family DATABANK. Because the ARCHIVE DIFFERENTIAL statement 
is specified, only files that have been updated or added since the last ARCHIVE FULL 
statement was executed are copied. 

ARCHIVE DIFFERENTIAL (KATZ)= FROM DATABANK; 

Because this example does not specify a backup tape name, the archive subsystem 
automatically provides a name. For example, if this statement is run on day 300 of the 
year 1990, the tape name is DATABANK90300 (that is, the family name - or up to 12 
characters of it-and the current year and day). 

Example 2 

This example shows a statement that starts a full archive backup. In this case, the 
family name is DATABANK and the backup tape name is DATABACKTAPE. File 

8600 0668-000 



Archiving Disk Files 

security attributes are applied to the backup tape by the InfoGuard subsystem, so that 
any user, privileged or not, can restore the files from the tape. 

ARCHIVE FULL *= FROM DATABANK TO DATABACKTAPE (KIND=TAPE, 
SECURITYTYPE=PUBLIC, SECURITYUSE=IN); 

Example 3 

This example shows a: statement that starts an incremental archive backup. Files are 
selected for backup only if they have been updated or added since the last archive 
backup operation was performed; whether or not the backup operation was differential 
or full is irrelevant to the file selection process. Because the family name is not provided, 
the archive subsystem performs an incremental backup on each online disk family in 
turn. The archive subsystem creates a separate backup tape for each disk family. 
The library equation directs the archive subsystem to use the selector support library 
SUPPORTLIB to approve the files that are chosen by the disk subsystem. 

ARCHIVE INCREMENTAL; 
LIBRARY SELECTOR (LIBACCESS=BYTITLE, TITLE=SUPPORTLIB ON PACK); 

Differences between Differential and Incremental Backups 

The decision to perform incremental or differential backup procedures between full 
backup operations depends on the policies and requirements of your installation. While 
the ARCHIVE INCREMENTAL and theARCHlVE DIFFERENTIAL statements both 
provide protection of data stored in disk files, there ar~ significant differences between 
them. The following discussion is presented to clarify these differences. 

Suppose, for example, that you perform a full backup of all files on the DATABANK disk 
family each Monday by including the following statement in a WFL job: 

ARCHIVE FULL *= FROM DATABANK TO MONDAY; 

This operation copies all disk files from the DATABANK family to the MONDAY backup 
tape. Each Tuesday through Friday, you perform daily incremental backups with the 
following statement: 

ARCHIVE INCREMENTAL *= FROM DATABANK TO DAILY; 

These daily operations copy to the DAILY backup tape only those files that have been 
changed or added since the :tast archive backup was performed. Therefore, Tuesday's 
tape includes only the files that have been changed or added since Monday (when the full 
backup was performed); Wednesday's tape includes only the files that have been changed 
since Tuesday. By Friday, your library of backup tapes consists of one full backup of the 
DATABANK family and up to four incremental backup tapes if some files were changed 
or added each day. 

To restore all files archived through Thursday, therefore, you must "load Monday's tape, 
and each incremental tape from Tuesday through Thursday (a total of four tapes). 

8600 0668-000 4-7 



Archiving Disk Files 

Suppose now that instead of using incremental backups Tuesday through Friday, you 
perform differential backups with the following statement: 

ARCHIVE DIFFERENTIAL *= FROM DATABANK TO DAILY; 

These daily operations copy to the DAILY backup tape all those files that have been 
changed or added since the last ARCHIVE FULL statement was executed (on Monday). 
Therefore, Wednesday's tape includes backup copies of all files copied on Tuesday's tape 
in addition to those files added or changed on Wednesday. By Friday, your library of 
backup tapes consists of one full backup of the DATABANK family and one differential 
backup tape; this is because the ARCHIVE DIFFERENTIAL statement causes the 
system to backup files cumulatively since the last full archive backup operation. An 
exception to this situation occurs if a file is changed or if a new file is added on a 
certain day of the week and subsequently removed from the disk before the backup is 
performed on Friday. To restore such a file, you need the backup tape created the day 
before the file was removed. 

To restore all files archived to their status as of Thursday, therefore, you need to load 
only Monday's full backup tape and Thursday's differential backup tape. 

ARCHIVE MERGE Statement 

4-8 

This statement transfers backup coples of files that reside on several backup tapes to a 
single tape. If there is insufficient space to merge all requested backup tape files to one 
tape, a reel switch condition results and the remaining files are copied to the next reel. 
This produces a single tape set of merged files. The primary purpose of this operation is 
to enable more efficient use of archiv~ tape volumes. 

Whether you merge files to a single backup tape or to a tape set, this statement is likely 
to free otherwise occupied tape volumes for other uses. 

The ARCHIVE MERGE statement affects backup tape files only; resident disk files are 
not affected by it. This is true even if there are files on the disk family that have been 
added or updated since the last backup operation, or if a backup file you are merging has 
been restored to disk and updated. The ARCHIVE MERGE statement accepts as input 
any file that has been archived to a backup tape by an archive backup statement, the 
ARCHIVE MERGE statement, or the ARCHIVE ROLLOUT statement. 

Note: Use of the ARCHIVE MERGE statement usually requires privileged 
access. However, a WFL job can also run this statement if it is 
started from an ODT without a usercode. In any case, this statement 
affects all tape files that are backed up or rolled out to a backup tape 
through the archive subsystem. 

As a merge operation executes, it requests as input the backup tape files created by 
preceding archive processes. During the operation, the archive subsystem prompts you 
to load the input tapes on the tape drives twice: once while the system creates the 
output tape directory, and again when it copies the selected files. 

If you are unable to load a tape during the first phase of a merge operation, the system 
displays the "NO FILE" message on the DDT. You can respond to this message by 

8600 0668-000 



Archiving Disk Files 

entering the OF (Optional File) system command. If you do so, the merge process does 
not copy files from the missing tapes to the merge tape. Instead, it continues to refer to 
the older versions of these missing files in the archive directory. A complete description 
of the OF system command is provided in the A Series System Commands Operations 
Reference Manual. 

Each time a file is copied to a tape, the corresponding archive record in the archive 
directory is updated to indicate the name and serial number of the new tape on which 
the backup copy resides. The archive directory maintains records of up to four backup 
copies for each file that is archived for a disk family. Although the system usually copies 
only the most recent generations of archived files from the most recently written tapes, 
it Can copy earlier versions of files from older tapes. However, this situation occurs only 
under the following circumstances: 

• The archive subsystem finds that the specified backup tape has been purged or 
overwritten, or the tape has been marked as destroyed. The subsystem determines 
this status by looking into the volume directory (if your installation has set the 
SECOPT TAPECHECK option to AUTOMATIC) or into the volume library in the 
catalog (if your installation runs its operations without the volume directory, but with 
the OP + CATALOGING option). 

• Your installation uses a custom version of the archive support library, and it has 
selected an older version of a backup tape for the merge operation. 

If you want to create a single backup tape that includes all resident and nonresident files, 
issue an ARCHIVE INCREMENTAL *= statement, followed by an ARCHIVE MERGE 
statement. This sequence of statements ensures that the output tape from the merge 
process contains complete backup copies of resident files· that have been changed or 
added since the last archive backup statement was issued; it then merges the new and 
existing backup copies onto a single backup tape or tape set. 

Examples of ARCHIVE MERGE Statements 

The examples that follow show various constructions of the ARCHIVE MERGE 
statement. 

Example 1 

This example shows the basic required elements of the ARCHIVE MERGE statement. 
These elements include the keywords ARCHIVE MERGE, a FROM clause, the name of 
the disk family, and a TO clause. The FROM and TO clauses specify the names of the 
tape volumes involved in the operation. Other options are available as well; they are 
explained fully in the A Series' Work Flow Language (WFL) Programming Reference 
Manual. 

ARCHIVE MERGE FROM DATABANK TO DATATAPE; 

Example 2 

This example requests that all backup copies of files for the DATABANK family be 
merged. The & DSONERROR option directs the archive subsystem to discontinue the 

8600 0668-000 4-9 



Archiving Disk Files 

merge task if an error occurs while it is processing files. Because library equation is 
used, file selection occurs through the ARCSUBLIB selector library. 

ARCHIVE MERGE & DSONERROR FROM DATABANK (SERIALNO=IIDBANKII ) 
TO ACCTBACK; 
LIBRARY SELECTOR (LIBACCESS=BYTITLE, 

TITLE=ARCSUBLIB ON PACK); 

Procedures resulting from archive options, such as & DSONERROR are described 
under "Using Task Variables and Archive Options" later in this section. 

ARCHIVE' PURGE Statement 

4-10 

This statement purges archive backup records from the archive directory, without 
affecting resident files in any way. The ARCHIVE PURGE statement does not affect 
backup information from catalog subsystem operations either. Purging archive backup 
records removes only the references to backup files. To remove an actual resident disk 
file, and all archive records associated with it, issue a WFL REMOVE statement followed 
by a WFL ARCHIVE PURGE statement. Both statements must identify the name of 
target file and the family name. 

Note: If you remove a file and do not purge its corresponding archive 
backup records, other archive subsystem operations continue to 
search for that file. The file continues to be available to the system, 
although indirectly; that is, ARCHIVE RESTORE operations and 
AUTORESTORE processes can still copy the file to disk. 

Examples of ARCHIVE PURGE Statements 

The examples that follow show various constructions of the ARCHIVE PURGE 
statement. 

Example 1 

This example purges the archive backup records for all files on the DATABANK disk 
family. 

ARCHIVE PURGE *= FROM DATABANK; 

Example 2 

This example purges all archive backup records associated with the usercodes CISCO 
andBJONES. 

ARCHIVE PURGE (CISCO)=, (BJONES)= 
FROM DATABANK (KIND=PACK); 

8600 0668-000 



Archiving Disk Files 

ARCHIVE RESTORE and ARCHIVE RESTOREADD Statements 

These statements reload backup copies of disk files from tape to disk. Only backup files 
that ~ere copied through one of the backup statements of the archive subsystem, which 
include the archive backup statements and the ARCHIVE ROLLOUT statement, can 
be restored to disk through the ARCHIVE RESTORE and ARCHIVE RESTORE ADD 
statements. 

Note: In most installations, reloading files other than your own requires 
privileged access. However, it is possible to reload someone else's 
files if the job running the RESTORE or RESTORE ADD process 
runs without a usercode and starts from an ODT. 

In general, the ARCHIVE RESTORE and ARCHIVE RESTORE ADD statements 
enable you to recover disk files that have been damaged, lost, or inadvertently removed 
from disk. 

The ARCHIVE RESTORE statement reloads the specified backup copies of files to disk 
even if generations of those files already exist on the destination disk. In contrast, 
the ARCHIVE RESTORE ADD statement reloads only the specified files for which 
generations do not already reside on the destination disk. In either case, the archive 
subsystem selects files by comparing the files you request with records in the archive 
directory. As the subsystem selects files for the RESTORE or RESTOREADD processes, 
it builds a library maintenance copy request for all selected files. The request includes 
the correct tape names and serial numbers of the most recently created backup tapes. 

The RESTORE and RESTOREADD processes do not affect the archive directory in any 
way. Consequently, you can remove a restored file and restore it to disk again, even if an 

. intervening archive backup has not been performed on that file. 

For ARCHIVE RESTORE requests that use the standard archive support library 
(*SYSTEM/ARCIITVESUPPORT), an older, archived generation of a file can overwrite a 
newer resident copy of that file. However, the archive subsystem usually restores files 
from the most recently written archive tapes. The archive subsystem can restore files 
from older backup tapes under the following circumstances: 

• The archive subsystem finds that the contents of a specified backup tape have been 
purged or overwritten, or the backup tape has been marked as destroyed. The 
SUbsystem determines this by looking into the volume directory (if your installation 
has set the SECOPT TAPECHECK option to AUTOMATIC) or into the volume 
library in the catalog (if your installation runs its operations without the volume 
directory, but with the OP + CATALOGING option). 

• Your installation uses a custom version of the archive support library, and 
that library selects an older version of a backup tape file for the RESTORE or 
RESTOREADD process. 

Examples of ARCHIVE RESTORE and ARCHIVE RESTOREADD Statements 

The examples that follow illustrate various uses for the ARCHIVE RESTORE and 
ARCHIVE RESTORE ADD statements. 

8600 0668-000 4-11 



Archiving Disk Files 

Example 1 

This example restores the file named STATS/DATA under the usercode BOBS to the 
DATABANK disk family. Because the & COMPARE archive option is specified, the file 
is copied to disk and then compared with its backup version to ensure the integrity of the 
RESTORE process. 

ARCHIVE RESTOREADD & COMPARE (BOBS)STATSjDATA 
TO DATABANK 

For this operation, the archive subsystem retrieves the archive record for the file 
(BOBS)STATS/DATA ON DATABANK. The subsystem then determines the name 
and serial number of the most recent backup tape that contains a copy of the file, and 
it calls library maintenance to copy the file from the backup tape to the disk family 
DATABANK. 

Example 2 

This example restores all backup copies of files to the disk family ACCTFILS. For this 
operation, the archive subsystem usually requests that you load various archive lJackup 
tapes as the COpy process proceeds. 

ARCHIVE RESTORE *= TO ACCTFILS; 

ARCHIVE ROLLOUT Statement 

4-12 

This statement moves selected disk files to archive backup tape media. The primary 
function of this statement is to free disk space for other uses, particularly when 
resources are limited. You can use this statement in one of three ways: 

• By specifying the amount of disk space - in sectors - to be made available 

• By specifying that all files belonging to specified users be rolled out 

• By specifying a percentage of disk space to which each user is to be reduced 

You specify this percentage through the DRC option of the ARCHIVE ROLLOUT 
statement. The DRC option is available to you even if your installation does not actively 
run the DRC subsystem. This option affects only those users for whom DRC limits are 
assigned in the USERDATAFILE. 

Whether you roll out files to tape by specifying a number of sectors or by using the DRC 
option, you are not required to name the backup'tape to which files are transferred. If 
you do not specify a tape name, a name is assigned for you. It consists of the first 12 
characters of the disk family name from which files are being transferred, followed by 
the current year and day (in the form YYDDD). 

As each selected file is rolled out to tape, the archive subsystem records the transfer in 
the archive directory. You can use rolled-out files as input to the ARCHIVE RESTORE, 
ARCHIVE RESTOREADD, and ARCHIVE MERGE processes and to ordinary library 
maintenance processes. 

8600 0668-000 



Archiving Disk Files 

Note: If the archive directory includes references to archived copies of the 
files your rollout process is requesting, the rollout process removes 
the resident versions of the files without recopying those files to 
tape. Therefore, it is possible to complete a rollout process without 
receiving a system request for an output tape. 

Before the archive subsystem actually performs a rollout operation, it· evaluates files for 
possible selection. This process is based on the usercode of the job that is running the 
ARCHIVE ROLLOUT statement, as follows: 

• If you do not list specific usercodes in your ARCHIVE ROLLOUT statement, 
only' the files under the usercode of the job that is running the rollout process are 
evaluated for possible selection. 

• If you start thejob that runs the ARCHIVE ROLLOUT statement at an ODT 
without a usercode, only the files under the asterisk (*) directory are evaluated for 
selection. 

• If your usercode permits privileged access and you specify ALL USERS in the 
ARCHIVE ROLLOUT statement, all files are evaluated for possible selection. 

To select files for the rollout operation, the rollout procedure reviews the specifications 
and options used in the ARCHIVE ROLLOUT statement and calls the selector 
library. This library determines which of the files belonging to the specified usercodes 
are rolled out. The file selection criteria used by the standard selector library 
(SYSTEM/ARCHIVESUPPORT) when the ALL Fll,;ES option is not specified include 
the following: 

• The size of the file 

• The value of the LASTACCESSDATE attribute 

• The value of the Fll,;EKIND attribute 

• The value of the SA VEFACTOR attribute 

• Whether or not the file is currently in use with the EXCLUSIVE file attribute set to 
TRUE 

Given these criteria, the archive selector library tends to select files with the following 
characteristics for rollout operations: 

• Larger files 

• Files that have not been used recently 

• Files with smaller SA VEF ACTOR attribute values 

Smaller files, recently accessed files, and files with larger SA VEFACTOR attribute 
values are less likely to be rolled out to a backup tape. Files that are opened exclusively 
when the rollout is requested are not rolled out unless the ALL Fll,;ES option is 
specified. 

In any case, even if the ALL FILES option is specified, the standard selector 
library never selects guard files or critical system files for rollout operations. When 

8600 0668-000 4-13 



Archiving Disk Files 

the DRC option is used, files whose names begin with an asterisk (for example, 
*SYSTEM/ALGOL) are not selected for rollout. These files are not subject to the space 
limitations set in the DRC sUbsystem. 

Specifying the SECTORS Option or Using the ORC Option 

You can use the ARCHIVE ROLLOUT statement to make otherwise in-use sectors 
available in either of two ways. You can use the SECTORS option of this statement, or 
use can use the DRC option. This discussion describes the differences between these 
two approaches to freeing disk space. 

Notes: 

• In general, use of the ARCHIVE ROLLOUT statement on files 
other than your own requires privileged access to files. 

• ARCHIVE ROLLOUT statements that include SECTORS 
specifications do not require DRC limits to have been set in the 
USERDATAFILE. 

• If you use the DRC subsystem option in this statement, the 
rollout operation affects only the files under usercodes for 
which DRC limits are assigned in the USERDATAFILE. A 
more detailed discussion of the DRC subsystem is provided in 
Section 9. 

When you use the ARCHIVE ROLLOUT statement with the SECTORS option to free 
a specified number of in-use sectors on a disk family, the archive subsystem copies files 
to tape or removes them from disk to satisfy your request. If you have specified-more 
sectors than are already in use under your usercoo.e on the disk family, the archive 
subsystem selects all of your files for the rollout operation. In this case, the operation is 
executed as if you had specified ALL FILES in the statement. 

Examples of ARCHIVE ROLLOUT Statements 

4-14 

The examples that follow illustrate various uses for the ARCHIVE ROLLOUT 
statement. 

Example 1 

This example shows an ARCHIVE ROLLOUT statement that frees a total of 3,000 
sectors of disk space by selecting files on disk pack P ACKl under the usercodes 
OCAROLAN, LECLERQ, or both. 

ARCHIVE ROLLOUT 3000 SECTORS SELECT (OCAROLAN), 
'(LECLERQ) FROM PACK! TO TAPE!; 

Because the statement specifies two us'ercodes, running it requires a privileged usercode. 
A user without privileged access can specify only his or her own usercode in the usercode 
list of any ARCHIVE ROLLOUT statement. Notice that this syntax does not include an 
equal ( =) sign to specify files. -

8600 0668-000 



Archiving Disk Files 

Example 2 

This example uses the ALL USERS option in the SELECT clause. If this statement is 
run under a privileged usercode, the archive subsystem either removes or copies files 
to tape until 10,000 sectors of in-use disk space are made available on PACKl. For 
instance, if there are 5,000 sectors available on PACK1 before the rollout, 15,000 sectors 
are available after the rollout process is complete. The archive subsystem selects files 
for this operation from all users; it does not free 10,000 sectors under each user on the 
family. All files, including those beginning with an asterisk (*), are possible candidates 
for rollout. If the usercode running this statement does not have privileged access, an 
error message . results and the operation terminates. 

ARCHIVE ROLLOUT 10000 SECTORS SELECT ALL USERS FROM PACK1 TO TAPE; 

Example 3 

This example uses the ALL FILES option. The only files exempt from rollout when you 
use this option and the standard selector library are guard files and critical system files. 

ARCHIVE ROLLOUT ALL FILES (OLOUSER) FROM PACK1 TO TAPE; 

Use of the ALL FILES option is recommended when a usercode at your installation is no 
longer valid and you want to make backup copies of the files under that usercode before 
you remove them from the pack. 

Example 4 

The DRC option of the ARCHIVE ROLLOUT statement examines the DRC 
subsystem user disk space limits for a di~k family. These limits are set through 
either the F AMIL YLIMIT or the OTHERF AMILYLIMIT attribute of the 
SYSTEM/USERDATAFILE. 

A DRC rollout operation removes or transfers files associated with the usercodes that 
you specify until the in-use disk space occupied by users is reduced by the requested 
percentage. The rollout procedure uses the following formula to determine the number 
of sectors it should roll out: 

((FAMILYLIMIT value) * (100 - percentage»/100 

For example, suppose that you need to make available 25 percent of the in-use disk 
sectors occupied by files under your usercode. To do so, you can use the following 
statement: 

ARCHIVE ROLLOUT ORC 25 FROM PACK1 TO TAPE; 

Suppose, too, that the amount of disk space your files can occupy is 10,000 sectors (as 
established by the FAMILYLIMIT attribute), and your files are currently using 9,000 of 
those sectors. In this case, the rollout procedure applies the following formula to reduce 
your in-use disk usage: 

((10,000)(100 - 25» / 100 

8600 0668-000 4-15 



Archiving Disk Files 

The resulting value is 75 percent of 10,000 sectors, or 7,500 sectors; but because your 
allocated files are already 1,000 sectors below your limit, the system rolls out only 
another 1,500 sectors. 

If you issued the same statement, but you had fewer than 7,500 sectors in use, the 
system wOll:ld not select any of your files for rollout. 

In general, the following rules apply to system use of the F AMIL YLIMIT and 
OTHERFAMILYLIMIT attributes in the USERDATAFILE during a DRC rollout 
operation: 

• . If the F AMIL YLIMIT value has not been set for a specified usercode, the rollout 
operation uses the OTHERF AMIL YLIMIT value for that usercode. 

• If neither the F AMILYLIMIT nor the OTHERF AMIL YLIMIT value has been 
set for a specified usercode, or if there is not an entry for a usercode in the 
SYSTEM/USERDAT AFILE, disk files for that usercode are not rolled out. 

• If the F AMIL YLIMIT value is negative, the rollout operation for the specified 
usercode does not take place. If a F AMIL YLIMIT value has not been set and the 
OTHERF.AMIL YLIMIT value is negative, the rollout operation for the specified 
usercode does not take place. A negative value for either attribute allows a user 
unlimited disk space for his or her permanent files. 

If you need more information on how to set disk space limits through the 
F AMILYLIMIT or OTHERF AMILYLIMIT attribute, refer to the discussion on using 
SYSTEM/MAKEUSER in the A Series Security Administration Guide. 

The following example provides another illustration of the DRC option in a rollout 
operation: 

ARCHIVE ROLLOUT DRC 30 OF ALL USERS FROM PACK! TO TAPE; 

If this statement is run under a privileged usercode, files are selected for rollout from all 
users on the P ACK1 family. For each user, the amount of space a user can use is reduced 
to 70 percent of the limits set by the FAMILYLIMIT or the OTHERF AMILYLIMIT 
attribute for that usercode. 

If the above statement is run under a usercode for which privileged access is not allowed, 
files are not selected for rollout and the following message is displayed: 

ARCHIVE ROLLOUT, NO FILES SELECTED FOR COPYING ON PACKl 

Percentage values are always expressed as integer values. Usually, these values range 
from 0 to 100. 

• If you enter 0 as the percentage value, files are rolled out until each user's disk space 
usage is less than or equal to the limit set in the F AMIL YLIMIT attribute. 

• If you enter 100 or a number greater than 100, the system rolls out all files 
associated with the specified usercode, except for guard files and critical system files. 

4-16 8600 0668-000 



Archiving Disk Files 

• If you enter any integer value between 0 and 100, in-use disk space is reduced by 
the rollout operation, based on-the values associated with the FAMILYLIMIT or 
OTHERF AMILYLIMIT attribute. 

Using Task Variables and Archive Options 
You can monitor the status of most archive subsystem processes, including the archive 
backup processes and the MERGE, RESTORE, RESTOREADD, and ROLLOUT 
operations, by using task variables with your WFL archive statements. If you use these 
variables, and an error occurs during the archive operation, the T ASKV ALUE attribute 
of the task variables shows a-value other than zero. If you need specific information on 
task variables and attributes, refer to the A Series Task Management Programming 
Guide and the A Series Task Attributes Programming Reference Manual. 

When an archlve subsystem operation has completed backing up, merging, or rolling out 
files, the resulting library maintenance tape is rewound and unloaded automatically. If 
errors have occurred during the operation, however, the output tape might not include 
all the files you intended to backup, merge, or rollout. 

You can use the & DSONERROR, & VERIFY, and & COMPARE options with any 
archive statement except the ARCHIVE PURGE statement. Each option is described 
in greater detail in the A Series Work Flow Language (WF'L) Programming Reference 
Manual. 

If you include the & DSONERROR option in a statement, and an error occurs during 
processing, the archive subsystem discontinues the operation it is performing. It then 
purges any tape it is creating and the archive records it has written during the operation 
from the archive directory of the disk family. 

If you include the & VERIFY option in a statement, and an error occurs during the 
verification phase of the operation, the system displays a message on the ODT asking 
whether or not it should purge the output archive tape. You can respond to this message 
by issuing the FR (Final Reel) system command. This response causes the archive 
subsystem to 

• Stop backing up, merging, or restoring files. 

• Purge the output tape it is creating. 

• Remove all archive backup records it has created during the operation from the 
archive directory of the disk family. 

Examples for Using Task Variables and Archive Options 

The examples that follow show two archive subsystem statements in which these options 
are used. 

Example 1 

This statement archives all files on the DATABANK disk family that have been added 
or updated since the last full archive backup operation was performed. The & VERIFY 

8600 0668-000 4-17 



Archiving Disk Files 

option causes the system to write checksums on the tape for each file copied. The 
system then rewinds the tape, reads the files, and tests the checksum values. 

ARCHIVE DIFFERENTIAL & VERIFY *= FROM DATABANK 
TO BACKTAPEl; 

Example 2 

This example merges archived files from the DATABANK disk family that are associa.ted 
with the usercode BJONES onto a single backup tape or backup tape set. The 
& DSONERROR option causes the system to discontinue the operation if an error 
occurs during processing. If an error that is not recoverable occurs, the output tape is 
purged and any newly created archive backup records in the related archive directory 
are removed. 

ARCHIVE MERGE & DSONERROR (BJONES)= FOR DATABANK; 

Reviewing or Changing File I nformation in the 
Archive Directory 

4-18 

You can review some of the file information an archive directory maintains in anyone of 
the following ways: 

• Issue the PD (print Directory) system command to list backup information for files 
in the archive directory. This command lists disk file and archive information on the 
ODT. 

• Invoke the FILEDATA system utility and use one of the following requests to obtain 
a report: 

An ARCHIVEINFO request to produce a report of resident and nonresident files 
and backup file information from the archive directory for the files. 

A BACKUP request to produce a report of backup tapes in use for files of a 
specified family. 

The ARCHIVE modifier in a CODEFILEINFO, FILENAMES, CATALOGINFO, 
ATTRIBUTES, or STRUCTUREMAP request to cause reports to include 
displays of archive backup information for files. 

The FILEDATA system utility is described in the A Series System Software Utilities 
Operations Reference Manual. 

The GETSTATUS and SETSTATUS calls enable you to perform additional functions as 
well. For example, with these calls you can do the following: 

8600 0668-000 



Archiving Disk Files 

• You can retrieve archive information programmatically for specific files or for all files 
under a named directory. 

• You can program GETSTATUS calls to copy to a disk file all archive records in the 
archive directory for a disk family, or all archive records under a specified usercode 
for a disk family. You can then read the copied records and print detailed or special 
reports of the information they contain. Reports created in this way offer more 
detail than do reports created through the FILEDATA system utility. 

• You can use GETSTATUS calls to create backup copies of archive directory records. 

• You can program a SETSTATUS call to remove an existing archive record from the 
archive directory of a disk family. This kind of call can purge damaged, obsolete, or 
unused archive backup records from the archive directory of a disk family. This call 
corresponds functio~y to the ARCHIVE PURGE statement. 

• You can program a SETSTATUS call to add a new file record to an archive directory 
for a given disk family. This call can also restore missing or damaged records to an 
archive directory, or logically move a file from one family to another. 

If you need specific information on the available GETSTATUS and SETSTATUS calls, 
refer to the A Series GETSTATUS/SETSTATUS Programming Reference Manual. 

Appendix A of this guide provides the layout of the archive directory records. 

Modifying the Archive Support Library 
The archive support library to which you have mapped function names with the SL 
(Support Library) system command has final control over whether a file can or cannot be 
copied, merged, restored, or rolled out by the archive subsystem. 

In its unmodified form, the standard archive support library that is issued with each 
A Series mark release can select any files to which the user has access for any archive 
operation. The only exception to this rule occurs when ARCHIVE PURGE statements 
are executed; the archive support library is not used for these operations. 

The standard file selection procedure meets the needs of most conventional installations. 
If, however, the needs of your installation are different, it is possible to modify the 
standard archive support library, or to define a new one. For example, you can define 
a custom archive support library that prevents ROLLOUT operations from selecting 
files that are in use, or that prevents archive backup procedures or other ARCHIVE 
operations from selecting database files. 

The *SYSTEM/ARCIDVESUPPORT file is the standard code file for the archive support 
library; the *SYMBOL/ARCIllVESUPPORT file is the symbolic file. If you choose to 
modify the standard archive support library, you can make those changes in the symbolic 
file. You must then recompile the file with the DCALGOL compiler. 

If you want an ARCHIVE operation to use a library other than the library to which 
you have mapped functions with the SL system command, you must include a library 
equation with your archive subsystem statement. The library equation enables you to 
specify other libraries by title. The following example shows the format of the library 
equation as you might use it: 

8600 0668-000 4-19 



Archiving Disk Files 

ARCHIVE ROLLOUT 1000 SECTORS (X) FROM DISK; 
LIBRARY SELECTOR (LIBACCESS=BYTITLE,TITLE=MY/ARCLIB ON PACK); 

Notice that the library equation specifies the internal name SELECTOR, and uses the 
LmACCESS and TITLE attribute specifications. Together these attributes define 
access to the library as BYTITLE, and specify the name of the library code file as 
MYIARCLIB on the disk family. For more information on libraries in general, or on 
library equations and attributes, refer to the A Beries Task Management Programming 
Guide. 

About Archive File Selection 

When you issue any of the archive subsystem statements, either through a WFL job 
or at an ODT, the system begins the operation by locating the files specified in the 
statement. During this process, the system locates the disk family and the disk file 
headers or archive records for all specified files, directories, and usercodes. If the system 
cannot locate these elements, it issues warning messages; it issues error messages if the 
statement specifies files that are exempt from archive subsystem operations, such as 
BADDISK and SYSTEMDIRECTORY files. 

Because operations performed through the ARCHNE FULL, ARCHNE 
DIFFERENTIAL, ARCHNE INCREMENTAL, andARCHNE ROLLOUT statements 
manipulate resident disk files, these processes require disk file headers to be present. 
In contrast, MERGE and RESTORE operations require archive backup records to be 
present. 

The system calls the appropriate selector library for each file that it finds. This library 
can be the standard version in the *SYSTEM/ARCHNESUPPORT file or a custom 
version. The selector library determines which of the files presented to it by the system 
can be used in the archive subsystem operation. The selector procedure selects the 
candidate files on the basis of the kind of archive operation that is executing, the name 
of the file, the disk file header information (if the file is resident), and any available 
information from the archive directory. The· decision to select a candidate file can be 
delayed until all the files have been compared with the list of files in the selector library; 
this process can be useful during ROLLOUT operations in which attributes of the 
candidate files are compared to each other. 

When the selector procedure has determined the files to be copied or added, the system 
constructs a library maintenance request to copy or add the chosen files. Based on the 
archive statement that is issued and the various parameter values defined in the selector 
procedure of the support ,library, files can be archived, merged, restored, or rolled out. 

Note: Keep in mind that the status of a file can change between the time it 
is selected and the time it is actually used in an archive operation. 
That is, the resident version of a file can be removed, updated, or 
overwritten between the time the system submits it to the selector 
procedure of the support library and the time the archive subsystem 
actually copies it during an archive operation. 

4-20 8600 0668-000' 



Archiving Disk Files 

Selector Procedure· and Parameter Values 

The information presented here describes the parameters used by the selector 
procedure of the standard archive support library. If you are not already familiar 
with the layout of the words and fields associated with the parameters of the 
selector procedure, refer to the SYMBOL/ARCHIVE SUPPORT file on your 
release tape. This file is a DCALGOL symbol file. The DCALGOL code file is the 
SYSTEM/ARCHIVESUPPORT file. 

Any selector procedure used by the archive subsystem must be declared as type REAL, 
with the name ARCHNESELECTOR. This declaration must also list the parameters 

, CODES, SFN, DFHINFO, ARCREC, and MEM. An example of this declaration follows: 

REAL PROCEDURE ARCHIVESELECTOR (CODES, SFN, DFHINFO, ARCREC, MEM); 

ARRAY CODES [0]; 
POINTER SFN; 
ARRAY DFHINFO [0]; 
ARRAY ARCREC [0]; 
ARRAY MEM [0]; 

VALUE SFN; 
%·DESCRIBES KIND OF CALL 
% FILENAME IN STANDARDFORM 
% DISK FILE HEADER ATTRIBUTES 
% ARCHIVE RECORD 
% ONE MEGAWORD SEGMENTED ARRAY 

The ARCHI\TESELECTOR procedure returns a single result of type REAL to the 
archive subsystem. Any changes the selector procedure makes in the contents of the 
parameters are ignored by the archive subsystem. For example, if the selector procedure 
changes a file name that the pointer parameter SFN refers to, the actual archive process. 
does not change course and copy the file by its new name. Similarly, if the selector 
procedure changes some of the dates in the array parameter ARCREC, the actual 
archive directory record in which the original dates are stored is not affected. 

The text that follows describes each of the five parameters shown in preceding example 
of the procedure heading. 

CODES Parameter 

The CODES parameter is an array. It defines, generally, the characteristics of a call. 
Specific elements in this array define 

• Whether the procedure call is for a full, differential, or incremental backup, or for 
an archive rollout or other archive process. The kind of procedure is indicated in 
word 0, field [5:6] of the procedure. These code values are listed in Appendix A with 
the definitions under ARGTYPE. 

• The usercode of the calling process, which is defined in substandard form in words 5 
through 7 of the procedure. If the process is running without a usercode, these 
words consist of only zeros. . . 

• The name of the disk family, which is defined in substandard form in words 9 
through 11 of the procedure. 

Word 4 of the CODES array contains the file number that is assigned to a file for 
ordering within the archive process. 'The value shown in word 4 is 1 for the first file, 2 
for the second file, and so forth. If during the first call for a file the selector procedure 

8600 0668-000 4-21 



Archiving Disk Files 

returns the real result 2 (which means try again), the procedure passes again over all 
files for which a 2 value is returned. During the second pass, bit [11: 1] of word 0 is set 
to 1 and the same file number that was used in the first pass is placed in word 4 of the 
CODES array. 

Note: During the second pass, the required information for some or all of 
the files that were to be reprocessed (those files for which a 2 value 
was returned) might be missing. This can occur when required 
disk file headers or archive records have been removed or purged. 
Under these circumstances, the subsystem does not call the selector 
procedure for those files during the second pass. 

The CODES parameter also indicates whether the DFHINFO (disk file header 
information) parameter contains valid information and whether the ARCREC parameter 
contains a copy of the archive record for the chosen file. If the DFIITNFO parameter 
contains information, bit [47:1] of word 0 of the CODES array contains the value 1; if 
the ARCREC parameter contains information, bit [45:1] of word 0 of the CODES array 
contains the value 1. 

When archive record information exists, bits [35:2] of the CODES array indicate which 
archive tape is best to use. If the archive directory shows only one backup entry, bits 
[35:2] of word 0 receive either 0,1,2 or 3. If the archive directory shows two backup 
entries, bits [35:2] refer to the most recently written tape. However, it is possible for 
bits [35:2] to refer to an older backup tape. This can occur if there is a volume directory 
or a volume library for the tape that identifies the most recently written tape as purged, 
overwritten, or destroyed. 

SFN Parameter 

The SFN parameter points to the file name of the candidate file, in standard form. 

DFHINFO Parameter 

The DFHINFO par.ameter is an array that includes information on all file attributes for 
a file, as this information is recorded in the archive directory. Ifbit [47:1] of word 0 of 
the CODES array contains the value 1, the DFHINFO parameter contains information 
extracted from th~ disk file header for the resident disk file. This information describes 
the resident version of the file, including various timestamps, the file kind, and the size 
of the file. 

ARCREC Parameter 

4-22 

Ifbit [45:1] of word 0 of the CODES parameter contains the value 1, the ARCREC 
parameter contains a copy of the archive record for the candidate file. 

The layout of the archive directory records is provided in Appendix A 

8600 0668-000 



Archiving Disk Files 

MEM Parameter 

The MEM parameter is a segmented array that is declared to be 1,048,575 words long. 
The archive subsystem passes this array to the selector procedure during archive 
operations. Its function is to retain information for each file between calls for other files. 
The archive subsystem does not store, change, or erase anything in the MEM array. 

Because the standard support library (SYSTEMJARCHIVESUPPORT) is defined as a 
shared-by-aIllibrary, the library cannot have any global memory of its own. The archive 
processing procedure in the MCP compensates by supplying the MEM parameter (a 
large storage array) for each independent archive process. Use of the MEM array 
enables the support library to remember file information for each archive process 
separately. 

If your installation has modified the standard selector procedure to use the MEM array 
during differential, full, and incremental archive backup operations, you should be 
careful when specifying file names for selection. If you do not include a file or directory 
list and family name in the WFL statement, the operation executes sequentially, 
selecting files from each online disk family. For a multiple-family archive process, you 
can use the file number (word 4 of the CODES array) or the family name (words 9 
through 11 of the CODES array) to determine which family is being processed and when 
processing began. At these transitions, you might want to erase some of the information 
you have stored in the MEM array that applies to the preceding family. 

Selector Procedure and Returned Results 

When the selector procedure determines whether a candidate file is to be copied in 
an archive operation, it returns a type REAL value, as described under "Selector 
Procedures arid Parameter Values" earlier in this section. The REAL values indicate 
whether a file is to be copied, the tape on which an archived file resides, and if a second 
call is to be made after the first calls for all files have been made. Each possible REAL 
value is described as follows: 

REAL Value 

1 & bkno [39:2] 

8600 0668-000 

Description 

A value of 1 indicates that the candidate file is to be copied. 
If the archive process is a rollout operation, a value of 1 
indicates that the file can be either removed or copied and 
removed, as required. 

A bkno value in bits [39:2] is used by the system when the 
operation is a RESTORE, RESTOREADD, or MERGE request. 
This result identifies a backup tape number: if bits [39:2] 
show a value of 0, the backup tape number to be used is OJ 
if bits [39:2] show a value of 1, the backup tape number to 
be used is 1, and so on. The archive process ignores 
bits [39:2] if the archive directory shows only one backup 
tape for the file, and for all archive requests other than 
ARCHIVE RESTORE, ARCHIVE RESTOREADD, 
and ARCHIVE MERGE. 

continued 

4-23 



Archiving Disk Files 

continued 

REAL Value 

2 

-1 

All other values 

Description 

Indicates that the archive selector procedure is postponing 
the decision to choose a file during its first pass over the 
candidate files. The archive subsystem performs a second 
call for all files yielding a valLie of 2 when it has completed 
its first call for all specified files. 

If during the second call the selector procedure again returns 
the value of 2 for a file, the file is rejected for the archive 
operation. That is, the file is not included in the executing 
archive operation. Therefore, a value of 2 during the second 
call for a file is functionally equivalent to a value of-1. 

Indicates that the selector procedure has rejected the file for 
inclusion in the executing archive operation. That is, the file 
is not to be copied or removed by the current operation. 

Indicate that the selector procedure has rejected the file for 
inclusion in the current archive operation. 

Standard Algorithms in the Selector Procedure 

4-24 

The following explanation describes the basic algorithms for file selection as they are 
defined in the SYMBOL/ARCHIVESUPPORT file. 

For any archive process other than an archive rollout process, a value of 1 indicates to 
the archive process that the candidate file is to be copied. If the .executing process is an 
archive RESTORE, RESTOREADD, or l\ffiRGE operation, and the selector procedure 
returns a value of 1 for a file, bits [39:2] are set to recommend a backup tape from which 
the file can be copied. Bits [39:2] are set according to the value of bits [35:2] of word 0 of 
the CODES parameter array. 

When you issue an archive rollout request, the selector procedure passes twice over all 
candidate files. During the first pass, the procedure ranks each file according to the size 
of the file and the values associated with the LASTACCESSDATE and SA VEFACTOR 
attributes. If the operation does not specify the DRC option, the row sizes of the files 
are also considered. In general, larger files are assigned lower ranks. 

Another important factor is the expiration date of a file. The selector procedure 
determines this date by adding the SA VEFACTOR value to the LASTACCESSDATE 
value. Files with later expiration dates are assigned higher ranks, while files with earlier 
expiration dates are assigned lower ranks. Files ranked lower are more likely to be 
rolled out by the archive subsystem. 

The relative rank and size of each file are stored in the MEM parameter, as indexed by 
the FILE NUMBER parameter. The file number is supplied by the CODES array. 

Between the first and the second passes, the selector procedure sorts the ranked files. 
The procedure then subtracts the sizes of the ordered files from the rollout goal, which 
appears in the CODES array, until the goal is reached. The rollout goal is the number of 
sectors or the percentage of disk space you specified in the archive statement. 

8600 0668-pOO 



Archiving Disk Files 

During the second pass, the selector procedure chooses the rank-ordered files that fall 
below the specified rollout goal. Chosen files are either moved to tape or deleted from 
disk without first being copied. Files that exceed the specified criterion are left on disk. 

In any case, the rollout algorithm. does not select certain kinds of files, and can (in special 
cases) deviate from the selection process described above. The following list describes 
these files and special cases: 

• The rollout algorithm does not select system files. This includes MCP code files 
designated with a CM (Change MCP) system command and archive directories. 

• The rollout algorithm cannot select guard files. These files control access to other 
files. If you were to roll out a guard file, you would loose access to the disk files and 
tape volumes the guard file is protecting. 

• The algorithm. does not select files that are currently opened with exclusive access 
unless the ALL FILES option is specified. 

• If you issue an ARCHIVE ROLLOUT statement or a WFL statement that specifies 
the ALL FILES option, the selector procedure selects all candidate files (except for 
the files listed above) without sorting them or issuing a second call. 

• If your rollout statement includes the DRC option, the selector procedure ranks and 
sorts files for each usercode separately. In this case, each usercode is assumed to 
have a different rollout goal. 

• If your rollout statement includes the DRC option, the selector procedure selects any 
file whose size exceeds the following formula: 

((FAMILYLIMIT value) * (100 - percentage))/100 

8600 0668-000 4-25 



4-26 8600 0668-000 



Section 5 
Cataloging 

All computer installations implement procedures to protect information they have stored 
in disk files. For additional protection, many installations keep extra copies of files in 
secure locations away from the site. This practice guards against loss of data from fire or 
other occurrences. Usually these backup files are kept on magnetic tape. 

Although backup procedures such as these are necessary, keeping track of the resulting 
backup copies and their various versions can pose difficulties. The CATALOGING 
option of the Unisys A Series systems can simplify the file tracking process. This section 
describes the catalog subsystem and explains the following topics: 

• Understanding how a cataloging system works 

• Setting up a cataloging system 

• Using a cataloging system 

• Using tape security 

• Rebuilding catalogs 

• Creating and using backup copies of the catalog 

• Replacing a damaged disk on a cataloging system 

Understanding How a Cataloging System Works 
The CATALOGING option provides an automated method of locating where backup 
copies of disk files and tape files are stored. The system handles cataloged disk files 
and cataloged tape files similarly, but this section focuses on cataloged disk files. This 
guide uses the term resident to refer to the primary copy (as opposed to a backup copy) 
of a file that is stored on disk, regardless of whether or not the disk is online. A file is 
nonresident if it is stored only on a backup tape or if it is a backup copy of a file and is 
stored on another disk family. Only one version of a file can be resident at one time. 
In this guide, the terms resident and nonresident do not pertain to the file attribute 
RESIDENT. 

This discussion of how a cataloging system works is divided into two parts: "Catalog 
Components" and "File Generations." 

Catalog Components 

The disk file access structure discussion under "Disk File Access" in Section 1 noted that 
cataloging systems store the access structure in the file SYSTEM/CATALOG/ < family 
index number> . It also noted that the SYSTEM/CATALOG file stores other 
information that pertains to cataloging. 

8600 0668-000 5-1 



Cataloging 

The SYSTEM/CATALOG file contains two other structures: 

• The volume library 

• The catalog 

The bulk of the SYSTEM/CATALOG file is made up of the catalog, which stores 
information about the location of resident backup copies of cataloged files. If a disk file is 
cataloged, the catalog keeps track of backup copies. Cataloged disk files can reside only 
on a disk volume that has been entered into the volume library. Cataloging can keep 
track of the backup copies of disk files only if the copies are stored on disks or tapes that 
have been entered into the volume library. 

If a tape file is cataloged, the catalog keeps track of its location. Cataloged tape files can 
reside only on a tape volume that has been entered into the volume library. Refer to 
Section 3 for a description of the volume library. 

File Generations 

You might want to keep one or two backup copies of a file. You might also want to retain 
older versions of a file for historical or developmental reasons. Cataloging can be used to 
automatically keep track of these copies and versions. 

The different copies of a file are referred to as the generations. The generation is 
determined by two file attributes, CYCLE and VERSION, and also the timestamp of the 
file. The system maintains the timestamp of each file automatically. 

The CYCLE and VERSION file attributes are integer values that programs can use to 
distinguish each generation of a file. The higher the value of CYCLE, and the higher 
the value of VERSION within a particular CYCLE, the better the genealogy of the 
generation is said to be, relative to other generations of the file. If you do not assign 
values to CYCLE and VERSION, the default value is 1 for CYCLE and 0 for VERSION. 
CYCLE and VERSION can be used when you create a, new file or access an existing file. 

The timestamp is a system attribute for each file that the system maintains to show the 
last time the file was altered, including changes to its data, name, security status, and 
certain file attributes. If a file has never been altered, the timestamp shows the time and 
date the file was created. 

Characteristics of a New File Generation 

5-2 

When a new generation of a file is created and made permanent, the system removes 
the previous resident generation of the file. If there are backup copies of the previous 
resident generation, an entry for that generation remains in the catalog. If there are no 
backup copies for the previous resident generation, the system deletes its catalog entry. 

When a new disk file is created, the system cannot check the contents of the file to see if 
it really is a new generation of an existing cataloged file or if it is a completely different 
file. The system checks only to see that both the file name and the family name are the 
same. This concept is important to remember if CYCLE and VERSION are not being 
used, and you copy a disk file to backup media and then remove the resident disk file. If 

8600 0668-000 



Cataloging 

you then create a different, unrelated file on the same family with the same name, the 
system automatically treats the new file as the newest generation of the other file that 
had the saine file name. 

Keeping Track of File Generations 

Cataloging allows you to keep track of up to seven different generations of a file and up 
to two backup copies of each generation. The CATALOGLEVELSET define that is 
compiled into the MCP designates the catalog level. The catalog level determines how 
many generations your installation can have. The catalog level is assigned the value 3 
when the MCP is shipped to your installation, which means that the catalog can keep 
track of four generations (including the resident generation). You can recompile the 
MCP with CATALOGLEVELSET equal to a value in the range 1 through 7. You can 
use the WM (What MCP) system command to find out what the catalog level is at your 
installation. 

If the maximum number of generations has been reached and a new copy is added, the 
generation with the worst genealogy is deleted from the catalog. The term worst can 
be defined as the oldest timestamp with the lowest version number of the lowest cycle 
number. The system ARCHIVING function allows you to save information about older 
generations after they are deleted from the catalog. ., 

If the USECATALOG file attribute,is TRUE when you want to access an existing 
disk file (a file for which the NEWFILE file attribute is equal to FALSE), the system 
locates the file through the catalog. By default, the system accesses the generation 
with the best genealogy unless you specify a particular CYCLE and VERSION or use 
the GENERATION file attribute. GENERATION allows you to access a particular 
generation by specifying an integer value that designates that generation. The value of 
GENERATION can range from 0 for the generation with the best genealogy to the value 
of CATALOGLEVELSET minus 1 for the generation with the worst genealogy. The 
default value of GENERATION is o. GENERATION is ignored ifUSECATALOG is 
FALSE when the file is accessed. 

When a GENERATION Value Is Not Designated 

CYCLE and VERSION function in the following manner on old files (files for which 
the NEWFILE file attribute is equal to FALSE) ifUSECATALOG is TRUE and if 
GENERATION has not been designated or has been assigned the value o. ' 

Example 1 

If you designate CYCLE and VERSION when you want to access the file, the system 
locates the generation that has that exact CYCLE and VERSION. 

If you do not assign a value to VERSION, the system locates the generation with that 
CYCLE and the VERSION equal to o. 

8600 0668-000 5-3 



Cataloging 

The following situations can occur when the system tries to locate the proper generation: 

• If there is no entry in the catalog for a file with that file name, the system displays a 
"NO FILE" message on the ODT. 

• If there is more than one generation of the file with that CYCLE and VERSION, the 
system chooses the generation with the most recent timestamp. If that generation 
is resident, the system accesses the file. If that generation is not resident, the 
system displays a "NO FILE" message on the ODT. This message also displays the 
serial number of the backup media on which that generation is stored. 

Example 2 

If you do not designate CYCLE and VERSION when you want to access. a file, and you 
either do not specify GENERATION or assign GENERATION a value of 0, the system 
locates the generation that has the highest CYCLE, the highest VERSION within 
that CYCLE, and the most recent timestamp within that CYCLE and VERSION. The 
following situations can occur when the system tries to locate the proper generation: 

• If there is no entry in the catalog for a file with that file name, the system displays a 
"NO FILE" message on the ODT. 

• If there is an entry in the catalog for the file and the generation with the best 
genealogy is resident, the system accesses the file. 

• If there is an entry in the catalog for the file but the generation with the best 
genealogy is not resident, the system displays a "NO FILE" message on the ODT 
along with a list of where backup copies of the generation are stored. 

When You Designate a GENERATION Value 
) 

5-4 

CYCLE and VERSION function in the following manner on old files (files for which the 
NEWFILE file attribute is equal to FALSE) ifUSECATALOG is TRUE, and you assign 
a value greater than ° to the GENERATION file attribute. 

Example 1 

If you designate CYCLE and VERSION when you want to access the file, the system 
first locates the g~nerations that have that exact CYCLE and VERSION. 

If you do not assign a value to VERSION, the system locates the generations with that 
CYCLE and the VERSION equal to o. The system then compares the timestamps of the 
generations within the selected CYCLE and VERSION and chooses the generation based 
on the value of GENERATION. 

For example, if you assign GENERATION the value of 0, the system selects the 
most recent timestamp within the appropriate CYCLE and VERSION. If you assign 
GENERATION the value of 1, the system selects the next most recent timestamp within 
the appropriate CYCLE and VERSION, and so on. 

8600 0668-000 



Cataloging 

The following situations can occur when the system tries to locate the proper generation: 

• If there is no entry in the catalog for a file with that file name, the system displays a 
"NO FILE" message on the ODT. 

• If the system locates generations with the correct CYCLE and VERSION, but 
the generation designated by the GENERATION file attribute is missing from 
the catalog, the system displays an "UNMATCHED GENEALOGY" message 
on the ODT. The designated generation is missing if GENERATION is assigned 
a value greater than or equal to the number of generations within that CYCLE 
and VERSION. For example, if there are three generations within that CYCLE 
and VERSION (generation 0, generation 1, and generation 2) and you assign 
GENERATION the value of 3, the system cannot find the correct generation. 

• If the system locates the correct generation based on CYCLE, VERSION, and 
GENERATION, but the designated generation is not resident, the system displays a 
"NO FILE" message on the ODT. This message contains the serial number of the 
backup media on which that generation is stored. 

Example 2 

If you do not designate CYCLE and VERSION when you want to access a file but 
do assign USECATALOG the value TRUE and assign a value greater than 0 to 
GENERATION, the system ignores the values of CYCLE and VERSION and uses 
only the timestamps to rank the generations. The most recent timestamp becomes 
generation 0, the next most recent timestamp becomes generation 1, and so on. The 
system then chooses the generation specified by the value of the GENERATION file 
attribute. 

The following situations can occur when the syste~ tries to locate the proper generation: 

• If there is not an entry in the catalog for a file with that file name, the system 
displays a "NO FILE" message on the ODT. 

• If the designated generation is not resident, the system displays a "NO FILE" 
message on the ODT. This message contains the serial number of the backup media 
on which that generation is stored. 

• If there are not enough generations of the file in the catalog (for instance, if there 
are only two generations but GENERATION is assigned the value 3), the system 
displays an "UNMATCHED GENEALOGY" message on the ODT. 

• If the designated generation is resident, the system accesses the file. 

Examples of File Generation Selection 

The following examples illustrate how the system uses CYCLE, VERSION, 
GENERATION, and the file timestamp to access the appropriate generation of a file 
named DEPOSITS. The resident generation of DEPOSITS is stored on a disk family 
named SAVINGS. Each example is based on the same table that lists the available 
generations of DEPOSITS. In these examples, the catalog level is 6, so that the system 
can keep track of six generations. 

8600 0668-000 5-5 



Cataloging 

5-6 

Example 1 

Cycle Version Timestamp 

6 0 03/28/85 18:06:05 

4 1 01/10/85 13:20:48 

3 2 01/17/85 16:45:00 

3 2 01/07/85 10:47:53 

3 2 01/07/85 10:00:00 

2 0 12/27/84 13:30:32 

Assume that you assign the following file attribute values: 

Attribute 

CYCLE 

VERSION 

USECATALOG 

GENERATION 

Value 

3 

2 

TRUE 

Not specified 

Backup 
Resident Tape 

No 230642 

No 421640 

No 726000 

Yes 839216 

No 587231 

No 032105 

The system finds three generations with the correct CYCLE and VERSION, so it 
chooses the one with the most recent timestamp, 01/17/85. That generation is not 
resident, so the system displays the following message on the ODT: r 

NO F,ILE DEPOSITS ON SAVINGS (PK), FIND ON (MT) [726000] 

You can then copy the file in from tape 726000. 

Example 2 

Cycle Version Timestamp Resident 

6 0 03/28/85 18:06:05 No 

4 1 01/10/85 13:20:48 No 

3 2 01/17/85 16:45:00 No 

3 2 01/07/85 10:47:53 Yes 

3 2 01/07/85 10:00:00 No 

2 0 12/27/84 13:30:32 No 

Assume that you assign the following file attribute values: 

Attribute 

CYCLE 

VERSION 

US ECATALOG 

GENERATION 

Value 

Not specified 

Not specified 

TRUE 

Not specified 

Backup 
Tape 

230642 

421640 

726000 

839216 

587231 

032105 

8600 0668-000 



Cataloging 

The system locates the generation with the best genealogy (the highest CYCLE and 
the highest VERSION within that CYCLE): a CYCLE of 6 and a VERSION of o. That 
generation is not resident, so the system displays the following message on the ODT: 

NO FILE DEPOSITS ON SAVINGS (PK), FIND ON (MT) {230642] 

You can then copy the file in from tape 230642. 

Example 3 

Cycle Version Timestamp Resident 

6 0 03/28/85 18:06:05 No 

4 1 01/10/85 13:20:48 No 

3 2 01/17/85 16:45:00 No 

3 2 01/07/85 10:47:53 Yes 

3 2 01/07/85 10:00:00 No 

2 0 12/27/84 13:30:32 No 

Assume that you assign the following file attribute values: 

Attribute 

CYCLE 

VERSION 

US ECATALOG 

GENERATION 

Value 

Not specified 

Not specified 

FALSE 

Not specified 

Backup 
Tape 

230642 

421640 

726000 

839216 

587231 

032105 

USECATALOG is FALSE, so the system does not examine the catalog. The system 
automatically accesses the resident generation, which has a CYCLE of 3, a VERSION of 
2, and a timestamp of 01/07/85 10:47:53. 

Example 4 

Backup 
Cycle Version Timestamp Resident Tape 

6 0 03/28/85 18:06:05 No 230642 

4 1 01/10/85 13:20:48 No 421640 

3 2 01/17/85 16:45:00 No 726000 

3 2 01/07/85 10:47:53 Yes 839216 

3 2 01/07/85 10:00:00 No 587231 

2 0 12/27/84 13:30:32 No 032105 

8600 0668-000 5-7 



Cataloging 

5-8 

Assume that you assign. the following file attribute values: 

Attribute Value 

CYCLE 3 

VERSION 2 

US ECATALOG TRUE 

GENERATION 1 

The system finds three generations with the correct CYCLE and VERSION and 
uses the timestamps to rank them. The most recent timestamp (01/17/85) is ranked 
as generation o. The next most recent timestamp (01/07/85 10:47:53) is ranked as 
generation 1. The earliest timestamp (01/07/85 10:00:00) is ranked as generation 2. The 
generation specified by the GENERATION file attribute, 1, is resident and the system 
accesses it. 

Example 5 

Cycle Version Timestamp 

6 0 03/28/85 18:06:05 

4 1 01/10/85 13:20:48 

3 2 01/17/85 16:45:00 

3 2 01/07/85 10:47:53 

3 2 01/07/85 10:00:00 

2 0 12/27/84 13:30:32 

Assume that you assign. the following file attribute values: 

Attribute 

CYCLE 

VERSION 

USECATALOG 

GENERATION 

Value 

3 

2 

TRUE 

3 

Backup 
Resident Tape 

No 230642 

No 421640 

No 726000 

Yes 839216 

No 587231 

No 032105 

The system finds three generations with the correct CYCLE and VERSION and 
uses the timestamps to rank them. The most recent timestamp (01/17/85) is ranked 
as generation o. The next most recent timestamp (01/07/85 10:47:53) is ranked as 
generation 1. The earliest timestamp (01/07/85 10:00:00) is ranked as generation 2. The 
generation specified by the GENERATION file attribute is 3, however, and generation 3 
does not exist. As a result, the system displays the following message on the ODT: 

UNMATCHED GENEALOGY 

8600 0668-000 



Cataloging 

Example 6 

Backup 
Cycle Version Timestamp Resident Tape 

6 0 03/28/85 18:06:05 No 230642 

4 1 01/10/85 13:20:48 No 421640 

3 2 01/17/85.16:45:00 No 726000 

3 2 01/07/85 10:47:53 Yes 839216 

3 2 01/07/85 10:00:00 No 587231 

2 0 12/27/84 13:30:32 No 032105 

Assume that you assign the following file attribute values: 

Attribute Value 

CYCLE Not specified 

VERSION Not specified 

US ECATALOG TRUE 

GENERATION 4 

The system ignores the CYCLE and VERSION values of the generations and uses only 
the timestamps to determine the genealogy. The system then ranks the generations in 
the following order: 

Generation Cycle Version Timestamp 

0 6 0 03/28/85 
18:06:05 

1 3 2 01/17/85 
16:45:00 

2 4 1 01/10/85 
13:20:48 

3 3 2 01/07/85 
10:47:53 

4 3 2 01/07/85 
10:00:00 

5 2 0 12/27/84 
13:30:32 

The generation specified by the GENERATION file attribute, 4, is not resident, so the 
system displays the following message on the ODT: 

NO FILE DEPOSITS ON SAVINGS (PK), FIND ON (MT) [587231] 

You can then copy the file in from tape 587231. 

8600 0668-000 5-9 



Cataloging 

Impact of Cataloging on System Performance 

Using cataloging to automate the locating of backup copies of files does involve a tradeoff 
because system performance can be reduced. Each time you open or close a disk file 
on a noncataloging system, two to three disk I/O operations must occur. One to two 
additional I/O operations are required to open or close a disk file on a cataloging system. 
Also, rebuilds take substahtially longer on a cataloging system than on a noncataloging 
system because both a catalog rebuild and a family rebuild must be done. 

Another tradeoff involved in cataloging is that the file SYSTEM/CATALOG is usually 
large. At least one sector and sometimes several sectors are needed to store the 
catalog information for each disk file on the system. Unisys recommends that the 
SYSTEM/CATALOG file be stored ona family with files that are not accessed frequently. 
Frequent I/O operations to the family containing SYSTEM/CATALOG· slow the 
handling of the catalog and thus the performance of the entire system. Use the DL 
(Disk Location) system command to designate the family on which you want to store 
SYSTEM/CATALOG. 

Setting Up a Cataloging System 

5-10 

To set up a cataloging system for the first time, perform the following steps. 
Do not use this procedure if you are already running on a cataloging system, 
because the current catalog becomes inaccessible as a result. The MCP must be 
compiled with CATALOGINGLEVEL > O. By default, the MCP is compiled with 
CATALOGINGLEVEL = 3. . 

1. Use the DL (Disk Location) system command to designate a disk family as the 
catalog family. 

2. Use the OP+CATALOGING version of the OP (Options) system command to 
enable the system option CATALOGING. 

3. If you want files to be cataloged by default, use the OP+ USECATDEFAULT 
version of the OP (Options) system command to assign TRUE as the default value of 
the USECATALOG file attribute. 

4. Haltlload the system. The system then displays the following message on the ODT: 

OK TO CREATE NEW CATALOG 

5. Enter the reply OK. The system then creates the new SYSTEM/CATALOG file on 
the catalog family. 

6. Use the WFL statement VOLUME ADD to enter into the volume library each disk 
and tape on which you want to store cataloged files. It is suggested that all disks and 
tapes used on your system be added to the vol~e library. 

7. Use the WFL statement CATALOG ADD to enter existing files into the catalog. 

8600 0668-000 



Cataloging 

Operating a Cataloging System 
This subsection explains the following procedures that you can use to operate a 
cataloging system: 

• Entering files into the catalog 

• Making backup copies of cataloged files 

• Accessing cataloged files 

• Removing catalog entries 

• Purging catalog backup tapes 

. Entering Files into the Catalog 

Mter cataloging is set up on your system, you can enter a file into the catalog by 
performing one of the following actions. You must store the file on a volumed disk. 

• Assign the vallIe TRUE to the USECATALOG file attribute before creating the file. 
The file is cataloged automatically when the file is made permanent. 

• Operate the system with the system option USECATDEFAULTenabled. This 
makes the default value of the U8ECATALOG file attribute TRUE and all 
permanent files are entered into the catalog when they are created unless their 
USECATALOG file attribute is assigned the value FALSE. 

• Use the WFL statement CATALOG ADD to mark a permanent file as cataloged. 

• Use the WFL statement COpy & CATALOG or ADD & CATALOG to copy the ·file 
to disk from backup media and enter the file into the catalog. The copied version is 
marked in the catalog as the resident version of the file with the source version listed 
in the catalog as a backup copy. 

• Use the 8M (Send to MCS or Database) system command to turn on the CANDE 
option CATDEFAULT. Enter the following when the CANDE MCS is running: 

<mix #> SM OP + CATDEFAULT 

When CANDE workfiles are saved, the CANDE option CATDEFAULT governs 
whether or not those files become cataloged files. 

Making Backup Copies of Cataloged Files 

Mer a file is cataloged, you can use the WFL statement COpy & BACKUP to make 
backup copies of the file. COpy & BACKUP performs two functions: it copies the file 
onto backup media, and stores in the catalog the volume name and serial number of the 
media the backup was copied to. Both the source and destination volumes in the COpy 
& BACKUP statement must be volumed media. 

You can save up to two backup copies of each generation of a file. If you use COpy & 
BACKUP to store a third copy of a generation on another volume, the catalog keeps 

8600 0668-000 5-11 



Cataloging 

track of only the two most recent copies. The system does not remove the earliest copy, 
but you cannot access it through the catalog. 

When you copy a cataloged disk file with the WFL statements ARCHNE FULL, 
ARCHIVE INCREMENTAL, ARCHIVE DIFFERENTIAL, or ARCHNE ROLLOUT, 
the system automatically places a backup reference in the catalog to the library 
maintenance backup tape that is generated by the archive process. 

Accessing Cataloged Files 

5-12 

The catalog can keep track of up to seven generations of each cataloged file, depending 
on the catalog level. You can choose which generation of the file the system accesses. 
The system uses the catalog to access the file if the value of the USE CATALOG file 
attribute is TRUE or if the USECATDEF AULT system option is enabled so that the 
default value of USECATALOG is TRUE. USECATALOG takes precedence over 
USECATDEFAULT. If USE CATALOG is assigned the value TRUE, but the default 
value of USE CATALOG is FALSE because USECATDEFAULT is not enabled, then 
USECATALOG still has the value TRUE. IfUSECATALOG is assigned the value 
FALSE, but the default value of USE CATALOG is TRUE because USECATDEFAULT 
is enabled, then the value of USE CATALOG is still FALSE. 

If USECATALOG is TRUE, the system accesses the generation with the best 
genealogy unless you request another generation by using the CYCLE, VERSION, or 
GENERATION file attributes. Again, the generation with the best genealogy is the 
one with the highest CYCLE, the highest VERSION within that CYCLE, and the most 
recent timestamp. 

USECATALOG must be TRUE in order for the system to automatically access the 
generation with the best genealogy. If USE CATALOG is FALSE, the system accesses 
the resident version of the file by default. If the generation with the best genealogy has 
been removed and another generation has been copied to disk, and thus is the resident 
version, the system might be using an outdated version of the file. 

The WFL statements REMOVE, CHANGE, ADD, SECURITY, and CATALOG ADD 
always act on the resident generation of the file, regardless of whether or not it has the 
best genealogy and regardless of whether or not USECATDEF AULT is enabled. 

When you use the WFL statement CATALOG DELETE, you can specify a particular 
generation by assigning CYCLE, VERSION, or GENERATION. If you do not specify a 
particular generation, the CATALOG DELETE operation acts on the generation with 
the best genealogy. The WFL statement CATALOG PURGE acts on all the generations 
of the file. Refer to "Removing Catalog Entries" in this section for more information 
about the CATALOG DELETE and CATALOG PURGE statements. 

The WFL statement RUN acts only on the generation with the best genealogy if 
USECATUEFAULT is enabled. IfUSECATDEFAULT is not enabled, RUN acts on the 
resident generation. 

If you use the RUN statement and the generation with the best genealogy is not 
resident, the system displays a "NO FILE" message on the ODT. This message also 

8600 0668-000 



Cataloging 

displays the serial numbers of the media on which backup copies of the file are stored. 
An example of this message is as follows: 

NO FILE DEPOSITS ON. SAVINGS (PK), FIND ON (MT) [347681] 

DEPOSITS is the file name, SAVINGS is the family name, (PK) indica~es that 
SAVINGS is a disk pack, (MT) indicates that the backup copy is on a magnetic tape, and 
347681 is the serial number of the tape containing the backup copy. 

The system command CS (Change Supervisor) acts only on the generation with the best 
genealogy ifUSECATDEFAULT is enabled. 

The system commands CM (Change MCP), CP (Control Program), MC (Make Compiler, 
PP (privileged Program), SI (System Intrinsics), and SL (Support Library) always act 
on the resident generation, regardless of whether or not it has the best genealogy and 
regardless of whether or not USECATDEFAULT is enabled. 

To examine backup file information such as the available generations, use the PD (print 
Directory) system command. The display generated by the PD command refers to the 
generations as entries. These entries range from 1 for the generation with the best 
genealogy to the value of CATALOGLEVELSET for the generation with the worst 
genealogy. Note that this numbering differs by 1 from that used in the GENERATION 
file attribute. If you use the PD command to examine the resident version and it is not 
the generation with the best genealogy, the system omits some of the PD display. You 
can also use the FILEDATA utility to display information about the attributes of a file 
and the backup copies of that file. 

Mer a file has been entered into the catalog and has been backed up, it remains in the 
catalog even if the resident version is removed. You might want to remove the resident 
version because you need to make disk space available, because the resident version is 
damaged, or because you want to create a new version of the file. 

If you try to open the removed file, the system displays a "NO FILE" message on the 
aDT that indicates the serial numbers of the media on which backup copies of the file 
are stored. You can then locate a backup file and copy it back in with the WFL COpy 
statement. 

Removing Catalog Entries 

There are two ways to remove information about a file from the catalog. The WFL 
statement CATALOG DELETE lets you remove references to a particular generation, 
including the one that is resident. The WFL statement CATALOG PURGE removes 
all the backup information for a file. The CATALOG DELETE and CATALOG PURGE 
statements delete only catalog entries; the resident and backup files are still available 
but cannot be accessed through the catalog. If the copy specified in the CATALOG 
DELETE statement is the resident version, the copy still remains the resident version 
after its catalog entry has been deleted. 

8600 0668-000 5-13· 



Cataloging 

Purging Catalog Backup Tapes 

After you have used the cataloging system for awhile, you might discover that you have 
backup copies on tape that are no longer needed. You can purge these backup tapes, 
rename them, and use them for other purposes, and the system automatically changes 
the name of the tape in the volume library to SCRATCH. However, the catalog entries 
for the files that were backed up on the tape still indicate that backup copies are stored 
on that tape and refer to its old name. 

Rebuilding Catalogs 
When a cataloging sy~tem needs to perform a family rebuild to recover from directory 
errors, it performs a family rebuild and then a catalog rebuild. A catalog rebuild is a 
lengthy process. 

During a family rebuild on a cataloging system, the system reads the flat directory to 
determine which files are resident and inserts the names of the resident files into the 
catalog and the FAST. 

During a catalog rebuild, the system reads the catalog to extract all the backup 
information for each cataloged file and enters the names of files that have backup copies 
into the file access structure table (FAST). 

For more information about the FAST and family rebuilds, refer to "Family Rebuilds" in 
Section 1. 

Creating and Using Backup Copies of the Catalog 

5-14 

You might want to make backup copies of the catalog itself from time to time to provide 
backups in case any catalog data on disk becomes corrupted or the catalog family fails. 
How often you should copy the SYSTEM/CATALOG file depends on the needs of your 
installation. When you use a backup catalog, the information is not available that has 
been added to the catalog since that backup copy was made. If the catalog entries are 
updated frequently and recovering the cataloging information is critical on your system, 
you will want to back up the catalog more often. 

The system can also have duplicate online copies of the catalog. Refer to "Duplicating 
Catalog Directories" in Section 8 for more information about this subject. 

You can copy the active catalog (SYSTEM/CATALOG/rumn or SYSTEM/ACCESS/nnnn) 
to a backup tape by using the following procedure: 

1. Issue the system command COPYCAT to create an inactive copy of the catalog. The 
correct syntax is as follows: 

COPYCAT <dummyname> ON <family name> <family index number> 

8600 0668-000 



Cataloging 

The variables < dummyname> and < family name> are designated so that the 
system can build a disk file that does not conflict with the active catalog. The 
variable < family index number> is the family index of the disk volume to receive 
the inactive copy. 

2. Use library maintenance to copy the inactive catalog file to ~ backup tape. At 
cataloging installations, the COPY command has the following syntax: 

COpy & COMPARE <dummyname> 
AS SYSTEM/CATALOG/<family index number> 

FROM <family name> (PACK) TO <tape name> 

At noncataloging installations, the COpy command has the following syntax: 

COpy & COMPARE <dummyname> 
AS SYSTEM/ACCESS/<family index number> 

FROM <family name> (PACK) TO <tape name> 

3. After the copy to tape has completed, you can remove the dummyname copy of the 
catalog from the disk. 

When you restore the catalog from a backup copy, some catalog information is not 
up-to-date. The names and serial numbers of backup media are not available if the 
backup media have been made since the last time the catalog was backed up. As a 
result, the backup copies of files that were made after the catalog was copied to tape 
cannot be accessed through the catalog. Also, the names and other information are not 
available for volumed tapes that have been changed since the catalog was backed up. 

When you need to replace the current catalog, you can do one of the following 
operations: 

• If the catalog family is usable, you can replace the current catalog so that the backup 
catalog is on the same family and is thus easy for you to locate. However, replacing 
the current catalog requires extra steps, because the current catalog is marked as a 
nonremovable system file. 

• If you cannot restore the catalog family, you must designate a new catalog family and 
copy the backup catalog to that family. 

Replacing the Current Catalog 

To replace the current catalog, perform the following steps: 

1. Use the OP - CATALOGING version of the OP (Options) system command to 
disable the CATALOGING system option. 

2. Haltn.oad the system. 

3. Use the WFL REMOVE statement to delete the catalog. The REMOVE statement 
syntax is as follows: 

REMOVE SYSTEM/CATALOG/= FROM <family name> 

The variable < family name> is the name of the catalog family. 

8600 0668-000 5-15 



Cataloging 

4. Use the WFL COPY statement to copy the backup catalog from tape. The COpy 
statement syntax is as follows: 

COpy SYSTEM/CATALOG/<family index number> FROM <tape name> 
TO <family name> (PACK) 

The variable < family index number> is the family index number of the disk that 
the new catalog is to be stored on and the variable < family name> is the name of 
the catalog family. 

5. Use the OP+ CATALOGING version of the OP (Options) system command to 
enable the CATALOGING system option. ( 

6. Halt/load the system. The system then performs a catalog rebuild, followed by a 
family rebuild for all the families on the system. These rebuilds can be lengthy 
processes and depend on the number of files on disks at the installation. 

Designating a New Catalog Family 

To designate a new catalog family . and store the backup catalog file there, perform the 
following steps: 

1. Use the WFL COPY statement to copy the backup catalog from tape to a family that 
. is not the current catalog family. The syntax is as follows: 

COpy SYSTEM/CATALOG/<family index> FROM <tape name> TO <family name> 
«family index» 

The variable < family index> is the three digit family index number of the disk that 
the catalog is to be stored on and the variable < family name> is the name of the 
family that is to become the new catalog family. 

2. Use the DL (Disk Location) system command to designate this family as the catalog 
family. 

3. Halt/load the system. The system now uses the new catalog on the restored family. 

Replacing a Damaged Volumed Disk 

5-16 

A base pack for a volumed family might become damaged so that none of the files on the 
family can be accessed. To preserve the backup information for the files that were on 
the original family, you must substitute another base pack for the damaged one or repair 
and reuse the damaged disk. 

8600 0668-000 



Cataloging 

To substitute a new base pack for the damaged one so that the new family inherits the 
backup information, perform the following steps: 

1. Use the RC (Reconfigure Disk) system command to reconfigure the new disk with 
the same family name and serial number as the damaged disk. When you use the 
original name and serial number, the new family is connected automatically to the 
old system archive directory for the family. When you issue the RC command, the 
system displays the following message on the ODT: 

PK<unit number> OK TO RE-ENTER INTO VOLUME LIBRARY 

2. Enter the reply OK. The system then performs a catalog rebuild. When the catalog 
rebuild is .finished, the disk is ready to have files stored on it. Whenever a program 
tries to access a file that was stored on the original disk, the system displays a "NO 
FILE" message on the ODT. This message lists the volume name and serial number 
of the media where backup copies are stored. 

If the damaged disk has been repaired, you must perform the following steps to re-create 
the family so that it inherits the backup information: 

1. Use the RC (Reconfigure Disk) system command to reconfigure the disk with exactly 
the same family name and serial number as that of the original disk. The system 
then displays the following message on the ODT: 

PK<unit number> VOLUMED DISK BEING CHANGED BY RC 

2. Bring the catalog family and any other desired disks online. The system then 
displays the message on the ODT: 

PK<unit number> OK TO. RE-ENTER INTO VOLUME LIBRARY 

3. Enter the reply OK. The system then performs a catalog rebuild. When the catalog 
rebuild is finished, the disk is ready to have files stored on it. Whenever a program 
tries to access a file that was stored on the original disk, the system displays a 
"NO FILES" message on the ODT. This message lists the volume name and serial 
number of the media where backup copies are stored. 

4. To restore the old disk files to the disk, copy the desired files from backup tapes. 

8600 0668-000 5-17 



5-18 8600 0668-000 



Section 6 
Comparing the Archive and Catalog 
Subsystems 

This section provides a general comparison of the differences and similarities that exist 
between the archive and the catalog subsystems. If you need specific information on the 
overall usage of these systems, refer to Sections 4 and 5. 

Availability and Compatibility Issues 
As an A Series user, you always have access to the archive subsystem. Use of this 
subsystem does not require special system option settings. Nevertheless, some of 
the archive subsystem statements require a usercode with privileged access. In 
contrast, the catalog subsystem is optionally available on A Series systems. To use this 
subsystem, your installation must enable the CATALOGING system option by issuing . 
an OP (OPtions) system command that includes a + CATALOGING specification. 
The OP system command is described in the A Series System Commands Operations 
Reference Manual. 

Although the archive subsystem and the catalog subsystem operate independently 
of each other, some operations occur in parallel if your installation both catalogs and 
archives files. For example, when you execute an archive backup or rollout operation 
on a cataloged disk file, the system records the backup entry in the catalog as if you had 
executed a WFL COPY & BACKUP statement through the catalog subsystem. In 
a similar manner, if you issue an archive statement that either opens or refers to an 
existing disk file and the USERCATALOG file attribute is set to TRUE, the catalog 
subsystem controls the generation of the file the· archive subsystem uses. File generation 
is controlled in this marmer even if an archive record for a usable version of the file exists 
in the archive directory. More information on file references and file OPEN requests is 
provided under "Effects of Nonresident Files on OPEN Requests and File References" 
later in this section. 

File Management 
The archive subsystem enables you to create backup copies of resident disk files, and to 
manage the resulting nonresident backup copies. The catalog subsystem performs 
similar functions in that it also enables you to back up and manage disk files. In addition, 
the catalog subsystem enables you to manag~ tape files. The only management of 
nonresident files you can perform through the archive subsystem occurs through the 
ARCHIVE MERGE WFL statement, which merges archived files from two or more 
backup tapes to a single tape or tape set. 

Only one generation of a file can reside on disk at any time: The archive subsystem 
can track up to four backup copies of one generation of a disk file. The cataloging 

8600 0668-000 6-1 



Comparing the Archive and Catalog Subsystems 

subsystem keeps track of up to two backup copies of several generations of a disk 
or tape file as determined by the file attributes CYCLE and VERSION; the total 
number of generations your catalog subsystem can maintain is determined by the 
CATALOGLEVELSET option (an MCP compile-time option). The mechanics of how 
generations are assigned to files and used in the catalog subsystem are described in 
greater detail in Section 5 of this guide. 

If you use the archive subsystem, it is important to notice that the resident and 
nonresident generations of archive files are not always the same. For example, different 
generations can result when you change a disk file without either rolling out or backing 
up the changed file to tape. If you then reload the unchanged, nonresident generation 
of the file through an archive restore process, the system replaces the changed disk file 
with the unchanged, nonresident generation. 

Effects of Nonresident Files on OPEN Requests and 
File References 

6-2 

The archive and the catalog subsystems recognize a disk file as nonresident when both of 
the following conditions are met: 

• The disk file header of the file is not stored in the fiat directory of its disk family. 

• The archive directory or the catalog directory contains references to backup copies of 
the file. 

Archive and catalog backup records are significant because they can affect the way in 
which the respective subsystems search for a requested file. For example, when disk 
family substitution occurs, a search for a disk file can be repeated with and without 
the usercode of the initiating process, and on the primary and alternate disk families. 
In these cases," the subsystem can terminate a file search if it does not find a resident 
generation of a file, or if it finds a record that refers to a nonresident generation. 

Searches for disk files can also be terminated when the system is processing ordinary file 
OPEN requests and code-file RUN requests, PROCESS requests, or library invocations. 

In general, the archive subsystem terminates its disk-:-file searches whenever it locates 
archive backup records that refer to the requested files. In the catalog subsystem, 
shortened searches result if the USECATALOG file attribute is set to TRUE during a 
file OPEN request, or if the OP + USECATALOGDEFAULT system option is enabled 
during a code-file invocation and the catalog subsystem finds a backup record for the 
requested file in the catalog directory. 

Note: The presence of archive or catalog backup records has no effect on the 
WFL requests CHANGE and REMOVE, or the library maintenance 
requests COPY and ADD. These requests operate only on resident 
generations of files. 

8600 0668-000 



Comparing the Archive and Catalog Subsystems 

Responses to the NO FI LE System Message 
When a disk file search results in a "NO FILE" condition, but a backup copy of the 
requested file exists, the archive or the catalog sUbsystem displays information 
describing the location of the backup file. The subsystems retrieve this information from 
their respective backup directories. 

If an archive record for the requested file exists, and your installation has enabled the 
AUTORESTORE system option, the SYSTEM/AUTORESTORE process automatically 
reloads the missing file to disk if the initiating task has the same usercode as the file. 

Displays of Backup Information and Reports 
Through the PD (Print Directory) system command or the FILEDATA system utility, 
you can display and generate reports of archive or catalog file information. These 
system commands are described more fully in the A Series System Commands 
Operations Reference Manual. The GETSTATUS and SETSTATUS system intrinsics 
that the PD command and the FILEDATA utility use are described fully in the A Series 
GETSTATUS/SETSTATUS Programming Reference Manual. 

About Volumed Tapes and Disks 
The catalog subsystem supports a volume library, which is the part of the 
SYSTEM/CATALOG directory that tracks all volumed tapes and disks used by the 
system. Tapes and disks for which descriptive entries have been added to the volume 
library though the WFL VOLUME ADD statement are said to be volumed. All cataloged 
files, including backup copies of cataloged files, can reside only on volumed tapes and 
disks. 

The archive subsystem does not provide a volume library facility, and does not require 
volumed disks and tapes for its operations. However, if your installation uses the 
catalog volume library or the volume directory, the archive subsystem uses the volume 
information in its operations. Specifically, the archive subsystem refers to the volume 
library or directory to determine whether a backup tape has been overwritten or purged. 
If this subsystem detects an altered tape, it updates the affected backup records in the 
archive directory. 

Detailed information on volume libraries and directories is provided in Section 3 of this 
guide. 

8600 0668-000 6-3 



6-4 8600 0668-000 



Section 7 
Planning and Installation 

Performance of your system depends on the efficient operation of certain critical system 
files. The best system performance is achieved if these files are allocated to disk families 
so that the accesses of the files do not interfere with each other. This section suggests 
methods that your installation can use to make efficient use of the disk subsystem. 
Disk file allocation is a complex subject, and this section does not attempt to make flat 
recommendations about where system files should be placed. The needs of each system 
are different, and this section is designed to suggest approaches you might want to 
consider when tuning and balancing the operation of your system. 

This section discusses the following topics: 

• The characteristics and requirements of the various system files 

• Allocation of system files to improve system performance and to ease recovery from 
certain errors 

• Starting up the system 

• The characteristics and use of disk file headers 

System File Requirements 
The MCp, disk access structure, flat directories, archive directories, system support 
libraries, system utility programs, and other system software components are stored 
as disk files. When this guide refers to system files, it means these system software 
components. 

The following information discusses the characteristics of selected system files. 

MCP Code File 

The current MCP code file (the one the system is running on) is accessed frequently 
and all accesses are time-critical. You can use the WM (What MCP) system command 
to determine which MCP code file the system is running on. Most accesses of the MCP 
code file are caused by presence-bit interrupts, which in this case notify the MCP that 
an MCP code file sector is needed that is not in main memory. The system then reads 
the code file sector into main memory from disk. The MCP cannot predict which code 
file sectors are going to be needed to be read into main memory, so it cannot read them 
into a look-ahead buffer ahead of time. The unit on which the MCP code file is stored is 
called the haltlload unit or the boot unit. Corruption of the MCP code file might require 
a haltlload. You can restore the file by.recopying the original file and then using the CM 
(Change MCP) system command to designate the new code file as the halt/load MCP. The 
MCP code file is not updated during system operation. 

8600 0668-000 7-1 



Planning and Installation 

System Library and Intrinsic Code Files 

These files include system libraries that are linked to function names established 
through the SL (Support Library) system command and system intrinsics established 
with the 81 (System Intrinsics) system command. The characteristics of the files are 
similar to those of the MCP code file. Their failure usually does not require a halt/load 
but can cause jobs using them to be discontinued. 

Other System Code Files 

These files, such as system compilers, have characteristics similar to those of the MCP 
code file. Their failure usually does not require a halt/load, but can cause jobs using 
them to be discontinued. It is suggested that these files be grouped onto a single family 
so that they can be conveniently referenced with the family substitution operation. 
Refer to "Family Substitution" in this section for more information on this subject. 

Overlay Files 

Data is stored in a temporary overlay file when it is overlaid in main memory. These 
files do not have headers in the flat directory. These files are accessed frequently, 
especially ifrru;rln memory is full or if the overlay goal (the MCP memory management 
factor OLAYGOAL) is assigned a value greater than O. All overlay file I/O operations are 
time-critical, and contention for the family where these files are stored can seriously 
affect system performance. Failure of the family where overlay files are stored can cause 
jobs to be discontinued and can require a system halt/load. It is not necessary or possible 
to save or restore the contents of overlay files. 

JOBDESC and Job Files 

7-2 

The JOBDESC file contains information about job files. Job files are code files that are 
compiled by the WFL compiler. Job files do not have headers in the flat directory. These 
files are accessed regularly, and all JOBDESC andjob file I/O operations are time-critical. 
Failure of these files can require a halt/load. You cannot recover the contents of these 
files, but you can re-create them by rerunning jobs. If persistent I/O errors occur for 
the JOBDESC file or the job file, you might have to perform one of the following two 
procedures: 

• Enter the primitive system command ??RJ (Remove JOBDESC File) and then 
halt/load the system to build a new JOBDESC file. 

• Use the DL (Disk Location) system command to create a new JOBDESC file on 
another family. 

Failure of the JOBDESC file results in the loss of the input job queues, information 
about the queues, andjob-log output for jobs that are waiting to be printed. The 
JOBDESC file also contains certain system operational characteristics such as ADM 
(Automatic Display Mode) settings and TERM (Terminal) settings. This information is 
lost if the JOBDESC file fails or is moved to another family. 

8600 0668-000 



Planning and Installation 

Printer and Punch Backup Files 

These files are accessed frequently, but I/O operations are buffered and thus are not 
time-critical. However, if these files are on the same disk with other system files, the 
I/O operations of printer and punch backup files can interfere with the time-critical I/O 
operations of other system files. The I/O operations of JOBDESC and job files are 
particularly time-critical. Failure of the printer or punch backup files leads to the loss of 
some output, and some jobs might be discontinued. You cannot recover the data in these 
files, but you can rerun the jobs again to produce output. 

SYSTEM/SUMLOG File 

The SYSTEM/SUMLOG file contains the log of many system activities and is accessed 
regularly. Its failure usually does not require a halt/load. You cannot recover the 
data in the log, which can pose a problem if your installation uses the log to provide 
information for billing purposes. If you use the log for billing, you should make backup 
copies as a precaution. If there are persistent log file errors, use the TL (Transfer Log) 
system command to save the log file and create a new one. 

Disk Access Structure File 

The disk access structure file is named SYSTEM/ACCESS/ < family index number> on 
noncataloging systems and SYSTEM/CAT ALOG/ < family index number> on cataloging 
systems. 

Disk Space Requirements 

The SYSTEM/ACCESS directory requires approximately 2,400 disk sectors plus 0.1 disk 
sector for every permanent disk file at the installation. For example, if the installation 
has three disk families and each has 2,000 files, the SYSTEM/ACCESS directory uses 
about 3,000 disk sectors. At cataloging installations, .the SYSTEM/CATALOG directory 
requires approximately 3,600 disk sectors plus 1.1 disk sectors for every permanent 
disk file, for every cataloged disk file that has been backed up, and for every cataloged 
tape at the installation. For example, if the installation has three disk families and 
each has 2,000 files, the SYSTEM/CATALOG directory uses about 10,200 sectors. In 
addition, the SYSTEM/CATALOG directory needs several words for every disk and 
tape volume that has been added with the WFL VOLUME ADD statement. Moreover, 
if the installation runs with SECOPT TAPE CHECK = AUTOMATIC, the space 
requirements for the SYSTEM/ACCESS or SYSTEM/CATALOG directory are expanded 
by approximately 1.1 disk sectors for each tape volume that has been added with the 
WFL VOLUME ADD statement. 

Restoration 

The disk access structure file is referenced regularly. Its failure can cause jobs to fail, 
can cause family and catalog rebuilds, or can require a halt/load. It is not necessary to 
restore the disk access structure file on noncataloging systems that are not using the 
tape security subsystem. If you re-create a disk access structure with a family rebuild, 

8600 0668-000 7-3 



Planning and Installation 

no data is lost. If you are using the tape security subsystem (system command SECOPT 
TAPECHECK=AUTOMATIC), restoration is necessary on noncataloging systems. 
You can write a program to make backup copies of the volume directory by using 
GETSTATUS and SETSTATUS calls. For more information, refer to theA Series 
GETSTATUS/SETSTATUS Programming Reference Manual. On a cataloging system, 
restoration of the disk access structure file is difficult and usually involves the loss of 
some catalog backup information. Refer to "Duplicating Catalog Directories" in Section 
8 for more information on the subject. 

Archive Directories 

Archive directory files names have the following form: 

SYSTEM/ARCHIVE/<family name>/<fami ly index> 

The variable < family name> indicates the family on which the archive directory resides. 
The system stores and references archive directories on the same family that it stores 
the directory SYSTEM/ACCESS or SYSTEM/CATALOG. 

The variable < family index> indicates the member of the catalog family on which the 
archive directory resides. Archive directories are accessed by archive backup and restore 
statements such as ARCHIVE FULL and ARCHIVE RESTORE and by the system PD 
(print Directory) command. An archive directory needs about two disk sectors for each 
backup file to be tracked. For example, if a disk family contains 5,000 disk files, and a 
WFL ARCHIVE FULL statement is executed for that family, the archive directory on 
the catalog family needs approximately 10,000 disk sectors. Archive directory failures 
can cause the archive subsystem to lose track of the backup tape locations of files 
previously processed by WFL ARCHIVE statements. Refer to "Duplicating Archive 
Directories" in Section 8 for more information on this subject. 

SYSTEM/USERDATAFILE File 

This file contains usercodes and passwords for system users and is small. Most of the 
I/O operations for this file are not time-critical. A copy of this file should be kept for 
backup, although you should take security precautions with the copy because of the 
sensitive nature of the information it contains. 

Sort Files 

7-4 

These are temporary files used by the sort intrinsic. The I/O operations of sort files dq 
not affect the performance of the MCp, but the I/O operations do affect the performance 
of programs that use the. sort intrinsic. Also, if the sort files are on the same family as 
other system files, sorting can interfere with the time-critical I/O operations of these 
system files. Sorting uses large temporary files, and it is not necessary to save backup 
copies. 

8600 0668-000 



Planning and Installation 

Disk File Allocation 
Your installation can control system performance and the ease of recovery from 
catastrophic errors to a great extent by your choice of which families you place various 
system files on. The MCP lets you select the location of the following code files (and thus 
to control what the halt/load family is): 

• The intrinsics file 

• The system libraries 

• The system files controlled by the DL (Disk Location) system command 

Your installation can mix some or all system files with files used by application programs 
or can segregate system files from files Used by application programs. These decisions 
involve tradeoffs, which are discussed in this section. 

It is important to remember that disk file allocation is a complex task, and the needs of 
one system can differ from the needs of another. Suggestions included in this section are 
not flat recommendations that apply to every system; instead, these suggestions provide 
approaches you might want to consider when tuning and balancing the operation of your 
sy'stem. 

For maximum system performance it would be ideal to store every system file on a 
different disk and never put any other files on those disks. But this is not practical for 
two reasons: some of the system files are very small and a large amount of disk space 
would be wasted, and the system would be vulnerable to the failure of anyone of several 
different disks or disk drives. When you are deciding where to locate disk files, consider 
the following criteria: 

• System performance (speed) 

• Amount of storage space needed 

• Ease of recovery from damaged files or media 

• The probability that the failure of a single disk will cause a service interruption (such 
as DISK DRIVE NOT READY errors that require a halt/load) 

The failure of a system file or the family it resides on usually does not result in the 
permanent loss of any important data except for USERDATAFILE, the log, and the 
catalog at an installation that uses cataloging and/or the tape security subsystem. 
Creating a new file or recopying the original file usually solves the problem. caused by 
the failure of system files other than USERDATAFILE, the log, and the catalog on 
cataloging systems. Sometimes you must move a system file to another family until the 
original family is restored. Use the DL system command to move a system file from one 
family to another. 

Most system files do not change in ways that require saving frequent backup copies. 
Unisys recommends that they be segregated from application data files that do need 
frequent safety backups. In this way, total failure of a family that contains system files 
does not entail the lengthy recovery operations that might be required for application 
data files. Similarly, total failure of a family dedicated to application data files does not 
harm the operations of the MCP. Thus, recovery actions to restore the application files 

8600 0668-000 7-5 



Planning and Installation 

can take place while the MCP is fully operational. In other words, it is probably simpler 
to segregate static system files (and static application files) from dynamic application files 
by putting them on separate families. 

System performance usually improves if you segregate the haltJIoad family and the 
overlay files from all other files. MCP code file presence-bit handling and overlay 
handling sharply affect the performance of the system. The worst possible performance 
is produced if these time-critical files share families with application programs that 
perform many 1/0 operations. .. 

Unisys suggests that the haltJIoad family be a single disk family with no application 
p1."ogram files stored on it. The halt/load family should not be a multidisk family unless 
you want to have duplicate MCP code files. Refer to "Duplicating MCP Code Files" 
in Section 8, "Safety Mechanisms," for more information on this subject. System 
performance usually improves if the haltJIoad family is reserved for the files that have 
to be there: the MCP code file and the SYSTEMtrRAINTABLES file, which controls 
printer operation. Systems that use network support processors (NSPs) must have the 
file FIRMW ARE/NSP stored on the haltJIoad family, and systems that use line support 
processors (LSPs) must have the file FffiMW ARE/LSP stored on the haltJIoad family. 
On A 1, A 2, A 3, A 4, A 5, and A 6 systems, Unisys also suggests that the BOOTCODE 
file be stored on the halt/load family. 

If your installation has a limited number of disk families, you can group as many system 
files as desired, taking into account the impact on system performance of grouping 
system files together. For example, you could store the disk access structure, the 
USERDATAFILE, and the overlay files on the haltJIoad family. Application files such as 
seldom-changed code files also could be grouped with the system files. 

If your installation has a limited number of disk families, you may have to group all 
the system files described above on the haltlload family and name that family DISK If 
your installation has. several disk families, however, you can improve performance by 
distributing the system files to different families. 

Family Substitution 

You might find it convenient to group the disk resources of your installation so that each 
department or other organizational unit using the system has access to its own disk 
family where its private files are stored. These organizational units, which this section 
refers to as departments, can still share the diskfamily on which the· system compilers 
and other system files are stored. 

Family substitution provides the mechanism so that files can be conveniently divided up 
among disk families. Family substitution allows you to designate which private family 
a particular program, job, or usercode should access for private files and which system 
family it should access for system files. 

You can assign a default family specification in the following ways: 

• With the MAKEUSER utility for usercodes 

• With task attributes within programs 

7-6 8600 0668-000 



Planning and Installation 

• Injobs with a WFL statement or the MQ (Make or Modify Queue) system command 

Unisys A Series system software and many application programs are written so that 
the system searches by default for a designated file on a family named DISK. Placing 
all files on DISK would be inefficient, so family substitution can be used to redirect 
files to other families. The family specification can designate both a substitute family 
name and an alternate family name. The syntax of the family specification statement 
is as follows: 

FAMILY <target family name> = <substitute family name> 
OTHERWISE <alternate family name> 

To use family substitution to distribute files to families other than DISK, use the 
family specification statement with DISK as the < target family name>, the private 
family of a department as the < substitute family name> , and the general family 
that contains system code files as the < alternate family name> . 

For example, the accounting department might use the following family specification 
statement: 

FAMILY DISK = ACCOUNTPACK OTHERWISE SYSTEMPACK 

In this example, the private files of the accounting department are on 
ACCOUNTP ACK and the system files are on SYSTEMP ACK 

When a program needs to access a file that is specified as being on the family 
DISK, the family specification causes the system to search on the substitute family, 
ACCOUNTPACK, and then the alternate family, SYSTEMP ACK, if the file is not 
located on ACCOUNTP ACK. If the system needs to access an application file for the 
accounting department, it uses the family specification statement to locate the file on 
ACCOUNTP ACK If the system needs to access a system file, such as the COBOL 74 
compiler, to do processing for the accounting department, the system performs the 
following steps: 

1. Instead of checking on DISK, the system checks ACCOUNTP ACK but cannot 
find the COBOL74 compiler. 

2. The system then checks SYSTEMP ACK, which is shared by all the 
departments, and locates the COBOL74 compiler. 

All new files that are specified as being directed to the family named DISK are 
stored on ACCOUNTPACK instead. 

On a system with several disk families, Unisys suggests that the system compilers, 
code files, and general support programs be stored on an alternate family that 
is shared by all the departments. On a smaIl system that does not have a large 
number of disk families, all system files could be grouped on the halt/load family. 
You could call the family DISK The family specification statement in this case would 
be the following: -

FAMILY DISK = <SUbstitute family name> OTHERWISE DISK 

In this example, each department could have its own < substitute family name>. If 
a program designates that the system is to check for a file on a family named DISK, 
the system checks for the file on the department family first, and then searches for 
the file on DISK if the file is not located on the·department family. 

8600 0668-000 7-7 



Planning and Installation 

Using family substitution does not prevent a program or user from accessing 
or allocating a file on a particular family other than the substitute family or the 
alternate family. If a family name is used that is not the target family in the family 
specification statement, the system places the file on the designated family. For 
example, assume that the substitute family name is ACCOUNTP ACK and you enter 
the following WFL syntax: 

RUN AUDIT/UPDATE ON AUDITPACK;FILE YEARTODATE 
(TITLE = FIRST/QUARTER ON AUDITPACK) 

The system locates both AUDIT/UPDATE and FIRST/QUARTER directly on 
AUDITPACK; ACCOUNTPACK is not accessed. However, if the program 
AUDIT/UPDATE needs to locate files other than YEARTODATE, and these files 
are designated in the program as being stored on DISK, family substitution causes 
the system to search for the files on ACCOUNTPAC~ 

For more information on the family specification statement, refer to the A Series 
Work Flow Language (WFL) Programming Reference Manual and the discussion 
of usercodes in the information on MAKEUSER in the A Series Security 
Administration Guide. 

Example of Disk File Allocation 

7-8 

The following example shows how your installation might want to allocate system files on 
a new system that has several disk families. This example uses four disk families for 
system files: HLPACK (the halt/load family), SYSTEMP ACK, JOBPACK, and PACK: 

Pack Name 

HLPACK 

SYSTEM PACK 

JOBPACK 

PACK 

Contents 

SYSTEM/TRAINTABLES, 
SYSTEM/SUMLOG,SYSTEM/USERDATAFILE, MCP code file 

Code files, system libraries, system intrinsics, IPSUPPORT library 

JOBDESC file, job files, SYSTEM/ACCESS or SYSTEM/CATALOG, 
. SYSTEM/ARCHIVE directories, overlay files 

Printer and punch backup files, work files for sort tasks 

The following is an example of the procedure you can use to allocate the system files to 
the disk families designated previously: 

1. Use the WFL COpy statement to copy SYSTEM/TRAINTABLES to HLPACK. 

2. Use the COPY statement to copy the system libraries, SYSTEM/INTRINSICS, and 
code files such as SYSTEM/COBOL and SYSTEM/ALGOL to SYSTEMP ACK. 

3. Use the SL (Support Library) system command so that the system references the 
following libraries on SYSTEMP ACK: 

SL BASICSUPPORT= SYSTEM/BASICSUPPORT ON SYSTEMPACK 

SL BNAV2ENVIRONMENT = SYSTEM/BNAV2/ENVIRONMENT ON SYSTEMPACK 

SL BNAV2MANAGERS = SYSTEM/BNAV2/MANAGERS ON SYSTEMPACK 

8600 0668-000 



8600 0668-000 

Planning and Installation 

SL BNAV2TRANSLATION = SYSTEM/BNAV2/TRANSLATION ON SYSTEMPACK 

SL COMSSUPPORT = SYSTEM/COMS ON SYSTEMPACK 

SL CPXSUPPORT = SYSTEM/CP2000/CP/SUPPORT ON SYSTEMPACK 

SL DATACOMSUPPORT = SYSTEM/DATACOMSUPPORT ON SYSTEMPACK 

SL DRCSUPPORT = <drcsupport code file> ON SYSTEM PACK 

SL DSS = SYSTEM/DSS ON SYSTEMPACK 
. . 

SL FORTRANSUPPORT = SYSTEM/FORTRANSUPPORT ON SYSTEMPACK 

SL GENERALSUPPORT = SYSTEM/GENERALSUPPORT ON SYSTEMPACK 

SL HELPSUPPORT = SYSTEM/HELP ON SYSTEMPACK 

SL IPSSWITCHBOARD = OBJECT/IPSSWITCHBOARD ON SYSTEMPACK 

SL KEYEDIOSUPPORT = SYSTEM/KEYEDIOSUPPORT ON SYSTEMPACK 

SL MCPSUPPORT = »CURRENT MCP« 

SL NCSDBSUPPORT = SYSTEM/NCSDB/LIBRARY ON SYSTEMPACK 

SL NETWORKSERVICES = SYSTEM/BNAV1/NETWORKSERVICES ON SYSTEMPACK 

SL NPSUPPORT = THRASHER/NPSUPPORT ON SYSTEMPACK 

SL PASCALSUPPORT = SYSTEM/PASCALSUPPORT ON SYSTEMPACK 

SL PLISUPPORT = SYSTEM/PLISUPPORT ON SYSTEMPACK 

SL PRINTSUPPORT = SYSTEM/PRINTSUPPORT ON SYSTEMPACK 

SL RPGSUPPORT = SYSTEM/RPGSUPPORT ON SYSTEMPACK 

SL SCREENDESIGN= SYSTEM/SCREENDESIGN/MANAGER ON SYSTEMPACK 

SL SCREEN FORMATS = SYSTEM/SCREENDESIGN/FORMATS ON SYSTEMPACK 

SL SCREENSUPPORT = SYSTEM/SCREENDESIGN/INTERFACE ON SYSTEMPACK 

SL SDASUPPORT = 37/SYSTEM/SDASUPPORT ON SYSTEMPACK 

SL TADSSUPPORT = SYSTEM/TADSSUPPORT ON SYSTEMPACK 

SL XREFSUPPORT =.SYSTEM/XREFSUPPORT ON SYSTEMPACK 

7-9 



Planning and Installation 

4. Use the S1 (System 1ntrinsics) system command so that the system references the 
intrinsics on SYSTEMP ACK: 

SI SYSTEM/1NTR1NSICS ON SYSTEMPACK 

5. Use the DL (Disk Location) system command to place the following system files on 
the appropriate disk families. When the system creates each file, it does so on the 
appropriate family. 

• DL BACKUP ON PACK 

• DL CATALOG ON JOBPACK 

• DL IPFILES ON SYSTEMPACK 

• DL JOBS ON JOBPACK 

• DL LOG ONHLPACK 

• DL OVERLAY ON JOBPACK 

• DL SORT ON PACK 

• DL USERDATA ON HLPACK 

6. Use the SB (Substitute Backup) system command to specify the substitute backup 
family for the printer and punch backup files: 

SB DISK = DLBACKUP 

SB PACK = DLBACKUP 

If a program designates that the backup files are to be stored on a disk family, the 
system uses the SB specification to place the backup files on the family designated . 
by the DL comrruind. 

7. Use the COpy statement to copy the MCP code file to HLP ACK and then use the 
CM (Change MCP) system command to designate that code file as the halt/load 
MCP. 

8. Use the :MAKEUSER utility to establish a default family specification for each 
usercode so that the. system is directed to first look for files on a departmental 
family and then on SYSTEMP ACK In this example, the departmental family is 
ACCOUNTPACK 

FAMILY DISK = ACCOUNTPACKOTHERWISE SYSTEMPACK 

System Startup 

7-10 

On nearly all Unisys A Series systems, you use SYSTEM/LOADER the first time that 
you initialize the system (A 1, A 2, A 3, A 4, A 5, and A 6 systems are delivered to the 
customer preinitialized). The functions of the LOADER include setting up the halt/load 
family and copying the MCP to the halt/load family. 

After the system is running, the LOADER will probably not be needed again. Instead, 
you can establish your system configuration with the WFL COpy statement and system 
commands such as DL (Disk Location), SB (Substitute Backup), S1 (System Intrinsics), 
and SL (Support Library). After the system is running satisfactorily, you should create 

8600 0668-000 



Planning and Installation 

alternate halt/load families. Refer to "Making Alternate or Standby Halt/Load Families" 
in Section 8, "Safety Mechanisms," for more information on this subject. It is probably 
safer and more productive if you use the MCP to recover from catastrophic e~rors than 
to depend on the LOADER. You should be more familiar with running the MCP than the 
LOADER because the MCP provides a wider range of capabilities. The LOADER should 
be used only as a last resort, such as if all alternate halt/load families fail. 

Disk File Headers 
This subsection describes disk file headers and briefly provides a history of their 
evolution through the Mark 3.8 release. The subsection also discusses the concept of the 
family header version, and provides instructions for converting the version to one that 
can be used with the current release. 

Understanding Disk File Header Versions 

Disk file headers contain the attributes necessary to describe the disk pack files and 
include such information as the file title, the actua1location of each area of the file, the 
maximum and minimum record sizes, the block size, and the title of the security guard 
file (if any). This information is used mainly by the MCP directory management and 
logical I/O'routines. Disk file headers are relatively permanent data structures that 
reside primarily in disk pack directory files located on the base units of each disk pack 
family. Disk file headers are also found on library maintenance tapes. 

Prior to Mark 3.6, all headers in directories had a version of either 3 or 4. The version 4 
header, introduced in Mark 3.3, makes use of some words and fields that were not used 
in the version 3 header. The version 4 header has a rigid structure that can create 
migration problems when attributes are added to it. The Mark 3.6 release introduced a 
totally new disk file header format that is much more flexible and allows new attributes 
to be added without creating migration problems. The version number of the new 
flexible header is 6. In general, the MCP now does all of its header processing by using 
the version 6 header format. 

To minimize problems in migrating from version 3 and 4 headers to version 6 headers, an 
intermediate disk file header format was also introduced on the Mark 3.6 release. The 
version,number of the intermediate format header is 5. The version 5 header layout is. 
basically the same as the version 4 header, except that the row address words can be in 
one or two formats: either the format used by version 4 headers or a new format with an 
expanded disk address field. When the MCP creates version 5 headers, it creates them 
with version 4 header format row address words whenever possible. Such headers are 
fully compatible with Mark 3.5 MCPs and earlier MCPs. 

Starting with the Mark 3.8 release, the MCP uses only version 6 headers for disk pack 
directories and library maintenance tapes. Library maintenance tapes created by 
the Mark 3.8 MCP and later releases of the MCP have version 6 headers. Library 
maintenance tapes created with earlier header versions are still usable, but these 
versions must be converted to version 6. 

8600 0668-000 7-11 



Planning and Installation 

Understanding Family Header Versions 

The concept of a family header version was introduced in the Mark 3.6 release to ease 
migration from version 4 to version 6 headers. The family header version of a disk or 
pack family controls the format in which headers are written to the directory of the 
family. In the Mark 3.8 MCP and later releases of the MCp, only version 6 family 
headers are allowed. 

The family header version is established when a family comes online and is based on the 
header of the SYSTEMDIRECTORY file of the current base pack of the family. For 
example, if the header version of the SYSTEMDIRECTORY is 6, the family header 
version is designated as 6. Treatment of family header versions other than version 6 is 
described in "Converting Family Header Versions." 

Converting Family Header Versions 

The Mark 3.8 release and later releases use only version 6 family headers. At halt/load 
time when the system initializes the disk subsystem, the action that you must take when 
a family with a header version less than 6 comes online depends on whether the family is 
the halt/load unit. In each case, the system issues one or more messages that describe 
the situation. 

Halt/Load Unit 

The halt/load unit must have a family header version of 6. If it does not, the halt/load 
cannot proceed. The system issues the following message: 

HALTLOAD UNIT <family number> <family name> HAS THE WRONG FAMILY 
HEADER VERSION, CHANGE HALTLOAD UNIT AND HALTLOAD AGAIN 

You must either designate a new halt/load unit or use the SYSTEM/LOADER program to 
load a Mark 3.6 MCP or a later release of the MCP. 

Catalog Unit 

The catalog unit must have a family version of 6. If it does not, the system pauses the 
halt/load and issues the following message: 

CATALOG UNIT <unit number> <family name> HAS THE WRONG FAMILY 
HEADER VERSION 

You must either designate a new catalog unit or halt/load the system to a Mark 3.6 MCP 
or a later release of the MCP. 

Other Units 

7-12 

If any other family does not have a family header version of 6, the system issues the 
following messages: 

8600 0668-000 



Planning and Installation 

OLD FORMAT HEADERS ON FAMILY <unit number> <family name>; 
IF FORMAT NOT CHANGED, FAMILY WILL NOT BE USABLE 

OK TO CHANGE FAMILY HEADER VERSION TO 6: PK <unit number> 
<family name> 

The system then waits for you to respond. System initialization continues while waiting 
for a response to the second message. You must reply OK for the family to be usable. If 
you answer DS (discontinue), the Mark 3.8 MCP and later releases of the MCP cannot 
use this family. 

Additional information about each of these messages can be found in the A Series System 
Messages Support Reference Manual. 

8600 0668-000 7-13 



7-14 8600 0668-000 



Section 8 
Safety Mechanisms 

The MCP code file, the flat directory of each family, the archive directory for each 
family, and the catalog on cataloging systems are vital for proper system operation. 
Although the failure of one of these critical System files is rare, it is still important to 
ensure that a problem with one of these· files does not cause a service interruption. The 
disk subsystem software enables you to duplicate these four system files so that the 
system can still operate after the failure of a disk on which a critical system file is stored. 
This section describes the duplication process for each type of file, and compares the 
approaches to duplicating these files. This section also explains how to make alternate 
haltlload families. 

The most basic safety mechanism is making backup copies of user disk files on tape or 
other disk families. The needs of each installation are different, depending on how 
often the files are changed, how critical the information on each file is, and whether 
the information can be more easily restored through an audit or other means. This 
section focuses on safety mechanisms for system files and does not provide details about 
safety mechanisms for user files. You can use the FILEDATA utility to produce a list of 
when each user file was last changed or updated. You can use the FILE COPY utility to 
automate the creation ofWFL jobs that make backup copies of user files. Refer to the 
A Series System Software Utilities Operations Reference Manual for more information 
about FILECOPY and FILEDATA For information about making backup copies of 
database files, refer to the A Series DMSII Utilities Operations Guide. You can also 
refer to the A Series File Attributes Programming Reference Manual for information 
about the DUPLICATED and COPIES file attributes. 

Duplicating Flat Directories 
As the number of disks in a family grows, a large amount of data becomes vulnerable to a 
single failure of the base pack. If the entire base pack is unusable, none of the data on 
any of the disks in the family can be accessed. If a particular record in the flat directory 
is corrupted, the file referenced by that record is not available. You can use the DD 
(Directory Duplicate) system command to avoid these problems. The DD command 
makes an exact duplicate of the flat directory on another member of the family. 

The duplicate flat directory has the following title: 

SYSTEMDIRECTORY/<family index number> 

The variable < family index number> is the family index number of the disk where you 
want to store the duplicate flat directory for the family. Up to three disks in each family 
can have a copy of the flat directory (the base pack and two continuation packs). When 
the system haltlloads or the family is readied, any of the family members containing flat 
directories can be used as the base pack. The system arbitrarily chooses one as the 
base pack and treats the others as continuation packs with duplicate directories. 

8600 0668-000 8-1 



Safety Mechanisms 

8-2 

All the family members that contain a copy of the flat directory must be online when you 
access that family, so that all changes in the directory can be made simultaneously to all 
copies. If all the disks containing directories are not mounted, .then the missing ones 
become outdated and their flat directories are not accepted by the system as up-to-date 
duplicates. 

If only one of the disks with a duplicate directory is mounted, the system requests the 
other ones by displaying the following message on the ODT: 

REQ PK <serial number> ON <family name> 

You should then mount all the disks in the family that contain a flat directory. If for some 
reason you cannot mount one of these missing disks, you should enter the OF (Optional 
File) system reply after the message is displayed on the ODT. The reply OF allows the 
family to be marked online without the missing disk. Mer the family is online, you 
should use the DD- version of the DD system command to delete the fiat directory of the 
missing member. 

If a disk with an outdated directory is subsequently mounted, you must be careful to 
avoid designating the outdated disk as having the most up-to-date directory. If the 
outdated disk is mounted when the up-to-date base pack is online, the system recognizes 
the discrepancy and asks what you want to do with the mismatching directory by 
displaying the following message on the ODT: 

DIRECTORY NOT CURRENT 

You can respond to this message in one of two ways: 

• Remove the outdated directory with the RM (Remove) system reply, which is 
equivalent in this situation to the DD- command. 

• Replace the outdated directory with the up-to-date directory by replying OK. This 
replacement is equivalent to deleting the outdated directory with the DD- command 
and then creating a new version with the DD command. 

Serious problems can occur if you do mount a disk with an outdated directory, and an 
up-to-date base pack is not online. The system detects that the up-to-date disk is 

. missing and requests that you mount it. If you then enter OF as a response, the family 
is marked online without that disk. The system cannot determine that the directory 
on the outdated base pack is out-of-date because the system does not have access to 
the up-to-date disk to compare timestamps. The system then marks the outdated base 
pack as even more up-to-date than the offline, up-to-date disk. The file header pointers 
to areas on the family are invalid on the outdated flat directory, and changes to the 
outdated fiat directory make the more current directory also invalid. This problem can 
never be corrected, and the system cannot detect the conflict. 

If the original base pack is deleted from a family on a cataloging system, the original 
base pack serial number is still used by the volume library to designate the family. This 
serial number should be specified when a VOLUME ADD or VOLUME DELETE WFL 
statement is used for the family. 

8600 0668-000 



Safety Mechanisms 

Duplicating A~chive Directories 
You can use theARCDUP <family name> system command to create online duplicates 
of the archive directories for selected families. The system places all duplicate 
directories on the catalog family where the base archive directory is located rather than 
on the family for which the archive directory is used. Therefore, if you want to duplicate 
archive directories, you must make the catalog family a multipack family. 

Another way to protect archive information is to make offline backup copies of the 
archive directories by using the ARCCOPY (Archive Copy) system command, the WFL 
COpy statement, or both. On a regular basis, you should make backup copies of your 
archive directories for each disk family at your installation. The frequency at which 
you perform these backup procedures depend on how often you execute WFL archive 
statements, because those statements cause new information to be written into the 
archive directories. 

To make backup copies of the archive directories for all disk families on your system, you 
can issue a series of ARCCOPY system commands that identify the disk family names, 
followed by a WFL COPY statement that moves the backup copies to a tape for safe 
storage. 

The following example shows three ARCCOPY commands that copy the archive 
directories for the families called DISK, PACK, and DATABANK from the catalog family 
to the PACK family. 

ARCCOPY DISK ARCBACKUP/DISK ON PACK 
ARCCOPY PACK ARCBACKUP/PACK ON PACK 
ARCCOPY DATABANK ARCBACKUP/DATABANK ON PACK 

When these commands have been processed to completion, you might issue the following 
WFL statements: 

COpy & COMPARE ARCBACKUP/= FROM PACK TO ARCBACKUP; 
REMOVE ARCBACKUP/=; 

The COpy statement shown in this example copies the backup files created by the 
previous ARCCOPY commands to tape and compares each copied file, bit-for-bit, to the 
original file. The REMOVE statement deletes the backup copies of these files from the 
PACK family. As an alternative to this procedure, you can copy your archive directories 
directly to tape. However, you can use this method only if other archive procedures or 
functions are not executing when you issue the COpy statement. 

The following example copies all archive directories from the volume named DISK to the 
ARCBACKUP volume: 

COpy & COMPARE SYSTEM/ARCHIVE/= AS ARCBACKUP/= 
FROM DISK TO ARCBACKUP; 

8600 0668-000 8--3 



Safety Mechanisms 

Restoring Backup Archive Directories 
If an archive directory is lost or damaged, you can replace it with its backup copy. The 
following procedure describes this process: 

1. Use the COpy statement to replace the lost or damaged archive directory with 
its backup copy. To ensure that the entire backup directory is copied onto a 
single member of the catalog family, use the F AMIL YINDEX clause of the COPY 
statement. 

For example, to restore the backup copy of the archive directory for the 
DATABANK disk family, issue the following COpy statement. For this example, it 
is assumed that the DISK family was defined as the catalog family. 

') 

COpy & COMPARE ARCBACKUP/DATABANK FROM 
ARCBACKUP TO DISK (FAMILYINDEX=l); 

2. Use the ARCREPLACE system command to remove the defective directory and 
activate the backup directory, as follows: 

ARCREPLACE DATABANK ARCBACKUP/DATABANK; 

Duplicating Catalog Directories 

8-4 

The AD (Access Duplicate) system command duplicates the system catalog 
or access structure to protect catalog and volume information. A duplicate 
of the SYSTEM/CATALOG file is useful on cataloging systems. A duplicate 
of the SYSTEM/ACCESS directory is useful on systems that run with 
SECOPT TAPECHECK= AUTOMATIC. On noncataloging systems that do not run 
with SECOPT TAPECHECK=AUTOMATIC, the SYSTEM/ACCESS directory can 
be rebuilt more easily than it can be duplicated. You can have up to three copies of 
SYSTEM/CATALOG or SYSTEM/ACCESS (the original and two duplicates). 

Another way to protect catalog information is to make a backup copy of the 
SYSTEM/CATALOG or SYSTEWACCESS file on tape from time to time. The latest 
catalog copy can be copied back to disk after a catastrophic failure of the catalog file 
or the catalog family. Refer to "Creating and Using Backup Copies of the Catalog" in 
Section 5 for more iriformation on this subject. 

If you are using the system command SECOPT TAPE CHECK = AUTOMATIC ona 
noncataloging system, you can use GETSTATUS and SETSTATUS calls to save and 
restore the volume directory. You can use GETSTATUS calls to copy all data records 
in the volume directory and SETSTATUS calls to delete serial numbers from the 
volume directory and add records to it. For more information on GETSTATUS and 
SETSTATUS calls, refer to the A Series GETSTATUS/SETSTATUS Programming 
Reference Manual. 

For maximum safety, you might want to have both duplicate online catalogs and backup 
copies of the catalog. Keeping backup copies of the catalog has one advantage over the 
use of duplicate catalogs. Changes are made to all online copies of the catalog, and in 

8600 0668-000 



Safety Mechanisms 

rare instances corrupted data can be placed in all the copies, such as in the event of an 
operator error. However, catalog backup tapes have three disadvantages: 

• Changes made to the catalog since the catalog was copied to tape are lost when the 
catalog file is copied back to disk from tape. 

• The system performs lengthy catalog and family rebuilds when the 1;>ackup copy 
replaces the old catalog. 

• An interruption in system operation is required to copy the backup catalog back to 
disk. 

Duplicating MCP Code Files 
If a halt/load family has a duplicate flat directory, it can also have a duplicate MCP code 
file. There are two reaSons to have a duplicate MCP code file. The first is to improve 
system performance; the second is to provide an alternate halt/load unit. 

Having two MCP code files on the halt/load family can improve system performance 
because the code files can share the I/O operation load. However, performance might not 
improve significantly if the flat directories of the halt/load family are updated frequently. 
The closing, creation, and removal of disk files on the haltlload family require additional 
I/O operations to update more than one directory. 

A duplicate MCP code file also provides an alternate halt/load unit to use when the 
normal haltlload unit fails. Duplicating the MCP code file to provide an alternate 
haltlload unit in the current haltlload family·is different from making an alternate 
haltlload family. The following differences exist between alternate haltlload families 
and alternate haltlload units,· and your installation can use none, one, or both safety 
mechanisms: 

• If errors occur on one copy of a duplicate MCP code file, the system can still use the 
other copy and does not require a haltlload to r.ecover from the error. A haltlload is 
required to switch to an alternate haltlload family. 

• Alternate haltlload units require duplicate flat directories and a multidisk family, 
which can slow system performance if the directories are updated frequently or if 
many files are stored on the family because it has more than one member. Alternate 
haltlload families do not require duplicate directories and can be single-member 
families. 

• In extremely rare cases, family failures can be so severe that a duplicate MCP code 
file or flat directory does not help anyway. 

• On systems with removable disks, alternate haltlload families can be stored offiine; 
alternate haltlload units cannot be stored offiine. 

Refer to "Making Alternate and Standby Halt/Load Families" in this section for 
more information about this subject. 

The CM (Change MCP) system command is used to duplicate the MCP code file. The 
duplication process results in a halt/load. The CM command that creates duplicate MCP 
code files on the haltlload family is as follows: 

8600 0668-000 8-5 



Safety Mechanisms 

CM <file name> «family index number list» 

The variable < file name> is the name of the MCP code file to be duplicated and the 
variable < family index number list> is the family index numbers, separated by commas, 
of the disks to receive the duplicates. Up to three disks can contain copies of the MCP 
code file (the original and two duplicates), as long as each disk contains a copy of the fiat 
directory. 

The following example shows the form of the name that the MCP creates for a duplicate 
MCP code file: 

<file name>/FMLYINX<family index number> 

The variable < file name> is the name of the original MCP code file and the variable 
< family index number> is the three-digit family index number of the disk that contains 
the duplicate. 

You can reduce the time needed by the MCP to do the CM operation by first copying the 
MCP code file (giving it the desired name) to the halt/load family members that are to 
become alternate halt/load units. Unlike the DD (Directory Duplicate) and AD (Access 
Duplicate) system commands, the CM command skips the copy operation if it locates 
matching files with the proper names and timestamps on the proper family members. 

The following series of statements shows how to use the WFL COpy statement to save 
time in the CM operation. In this example, the members of the family HLDISK with the 
family index numbers of 1 and 2 receive copies of the MCP code file. MCPBACKUP is 
the name of the tape containing the backup MCP code file, and SYSTEM/MCP is the 
name of the backup MCP code file. 

COPY SYSTEM/MCP AS SYSTEM/MCP/FMLYINX001 FROM MCPBACKUP 
TO HLDISK(FAMILYINDEX=l,PACK) 

COPY SYSTEM/MCP AS SYSTEM/MCP/FMLYINX002 FROM ~CPBACKUP 
TO HLDISK(FAMILYINDEX=2,PACK) 

Mter the copy operation completes, issue the CM command as follows: 

CM SYSTEM/MCP/FMLYINX001(1,2) 

The system waits for null mix with all libraries terminated. To force the CM to proceed, 
issue a primitive CM command as follows: 

??CM SYSTEM/MCP/FMLYINX001 

Monitoring Directory Duplication 

8-6 

If you have duplicate fiat directories, catalog files, or MCP code files, you should monitor 
the duplication operation at least once each day or after each halt/load to ensure 
that all the required duplicates are still active. It is possible for an. operator error or 
system error to cause the system to stop using a duplicate MCP code file, catalog, or 
flat directory. You can use the PD (print Directory) system command to examine the 

8600 0668-000 



Safety Mechanisms 

duplication and then restart the operation if one of the duplicate files has become invalid. 
By issuing the appropriate PD command, you can determine which files are in use. If a 
flat directory, catalog, or MCP code file is not shown in the PD display as "IN USE", then 
it is not a valid duplicate. The PD command syntax can have several forms: 

• Use the following command syntax for the catalog on cataloging systems: 

PO SYSTEM/CATALOG/= ON <family name> 

The variable < family name> is the name of the family where the catalog is stored. 

• Use the following command syntax for the access structure on noncataIoging 
systems: 

PO SYSTEM/ACCESS/= ON <family name> 

The variable < family name> is the name of the family where the access structure is 
stored. 

• Use the following command structure for fiat directories: 

PO SYSTEMOIRECTORY/= ON <family name> 

• Use the following command syntax for the running MCP code file: 

PO <file name>/= ON <family name> 

The variable < file name> is the name of the MCP code file, and the variable 
< family name> is the name of the halt/load family. 

• Use the following command syntax for archive directories: 

PO SYSTEM/ARCHIVE/= ON <family name> 

The variable < family name> is the name of the family where the catalog or access is 
stored. 

Comparing Duplication Commands 
This subsection discusses the functional and syntactical differences and similarities of 
flat qirectories, archive directories, catalogs, and MCP code files. These differences and 
similarities can affect the duplication of these files. 

The AD (Access Duplicate), ARCDUPLICATE (Archive Duplicate), DD (Directory 
Duplicate), or CM (Change MCP) system command can be used to make up to two exact 
copies of a given file, for a total of three copies. All four commands place the duplicates 
on different members in the same family; the file name assigned by the system indiCates 
the family index number of the disk the file is located on. However, the form of the name 
for the AD, ARCDUPLICATE, and DD commands differs from that of the CM command. 
Each copy of the file is always fully contained on one member of the family. 

The CM command ensures that the copies match the original by checking the MCP code 
file timestamp during the CM operation. Duplicate directories created with the AD, 
ARCDUPLICATE, or DD command have special internal timestamps that are checked 
and changed after every halt/load or every time a disk is readied. Because of an operator 

8600 0668-000 8 .... 7 



Safety Mechanisms 

or system error, it is possible for an error in the timestamps to occur after a directory is 
duplicated, so that the timestamps do not match. If that occurs, the system might cancel 
the AD, ARCDUPLICATE, or DD operation.' The system can still use the original copy 
of the directory, but you must reenter the AD, ARCDUPLICATE, or DD command to 
restore the duplication process. If the DD operation is canceled for a halt/load family 
member, any duplicate MCP code file for that family member is also deleted. 

Duplicate directories created by the DD command and duplicate catalogs created by 
the AD command lead to extra system overhead, because more than one file must 
be updated every time a file header is added, deleted, or changed. Duplicate archives 
created by ARCDUPLICATE commands lead to only a small increment in overhead 
during the execution of WFL archive statements. The duplicate MCP code file created 
by the CM command does not lead to any direct overhead, except that a duplicate MCP 
code file can be used only on a family that has a duplicate flat directory. 

The AD, ARCDUPLICATE , and DD commands have almost the same syntax. You 
must specify the family index number of the disk that is to receive the copy. For the 
ARCDUPLICATE system command, you must specify not only the family name for 
which the archive directory is to be duplicated, but also a family index on the catalog 
family where the duplicate is to be placed. The syntax of the CM command requires that 
you list the family members that are to receive a copy. If you do not supply this list, 
the CM command uses the last CM command list supplied for the family. If this is the 
first time the CM cOIl11'"lland is used for that family and no list is supplied, the command 
defaults to family index 001. 

The AD-, ARCDUPLICATE-, and DD- commands enable you to delete a duplicate copy 
of a directory. The CM command does not provide a direct method to delete a duplicate 
MCP code file. (The CM- command cancels an impending change in the MCP.) To delete 
a duplicate MCP code file, you must enter the CM command with a family index list that 
omits the family index number of the disk where the unwanted duplicate is stored. 

You can use the DD and CM commands for any multidisk family. You can use the 
ARCDUPLICATE command when the catalog family is a multipack family, even if 
the fainny for which the archive is to be duplicated is not a multipack family. The AD 
command applies only to the current catalog, so the syntax does not require a family 
name or file name. 

You can use the AD and ARCDUPLICATE coIlllll8.Iids on a multidisk family whether or 
not the DD command has been used on that family. Even if the directory of the family 
has been duplicated with the DD command, the AD and ARCDUPLICATE commands 
are not restricted to placing the duplicate catalog on a family member that contains a 
duplicate fiat directory. You can use the CM command to place a duplicate MCP code file 
on a family member only if that member contains a duplicate flat directory. However, 
every member that has a duplicate flat direCtory need not receive a copy of the MCP 
code file. For example, there might be two copies of the flat directory but only one copy 
of the MCP code file. 

Making Alternate or Standby Halt/load Families 

8-8 

You can use an alternate halt/load family or a standby halt/load family if the normal 
,halt/load family fails .. Making an alternate halt/load family is different from making an 

8600 0668-000 



Safety Mechanisms 

alternate halt/load unit on the current halt/load family. The discussion "Duplicating 
MCP Code Files" in this section describes the differences between alternate halt/load 
families and alternate halt/load units, and your installation can use none, one, or both 
safety mechanisms. 

There are two ways you can effectively use the command CM < file name> ON < family 
name> to make an alternate halt/load family. Each is based on the kind of disk media 
being used and whether or not your installation uses the MIRRORING subsystem. The 
methods are discussed in the information that follows. 

Using Online Disks 

1. Copy the MCP code file to several families that are usually online and then use 
one of the following command syntaxes to designate those families as alternate or 
standby halt/load families: 

2. 

eM <file name> ON <family name> 

eM <file name> ON <family name> + STANDBY 

Note: If your installation runs with OP + MIRRORING enabled, you 
should always use the + STANDBY form of the command. Standby 
is the preferred method for large systems that use partitioning such 
as the A 15 and the A 17. 

If the halt/load family experiences a failure, change to one of the alternate halt/load 
families and run from it while you restore the original halt/load family. 

Using Removable Disks Offline 

1. Make one or inore complete copies of the halt/load family on selected disks. Use 
the following command syntax to designate those disks as alternate halt/load 
families: 

eM <file name> ON <family name> 

2. Power off those disks and store them offline. 

3. If the halt/load family experiences a failure, retrieve one of the offline families 
and continue operations with it, including the operation of making a replacement 
alternate halt/load family. 

Note: Do not halt/load using an alternate halt/load family created by this 
method on a system that uses OP + MIRRORING. The result is full 
stop. 

This technique can be made even more reliable by rotating these offline backup families 
as the online halt/load family. This rotation is a way of checking that each backup family 
is intact. Note that if SYSTEM/ACCESS or SYSTEM/CATALOG file is stored on the 
halt/load family, time-consuming rebuilds must occur each time the halt/load family is 
changed. 

8600 0668-000 8-9 



Safety Mechanisms 

8-10 

The command syntax CM < file name> ON < family name> uses the designated MCP 
code file on the designated family, but it copies a large number of system attributes from 
the rwming halt/load family. These attributes cover everything from the host name to 
the list of saved and reserved units. For this reason, you might want to change a few of 
these system options (such as CATALOGING or OKTIMEANDDATE) just before you 
enter the CM command. Then, when the alternate halt/load family is finally used as a 
halt/load unit the system will not be running with the wrong options. 

After you have designated an MCP code file with the CM command, the system marks 
the code file as a nonremovable file. If you later try to copy in a new version of the file, 
the copy attempt stops and the following message appears on the ODT: 

DUP FILE(SYSTEM FILE) 

Enter CM- ON < family name> and remove the old MCP code file before starting 
the copy operation. After the CM- operation is completed, the disk is no longer a 
halt/load-capable family until the new version of the MCP code file is copied and the CM 
command has been used again to designate it as an MCP code file. 

If you have removable disks, you may want the backup halt/load families to have the 
same name as the current halt/load family. It is then easier to switch from one halt/load 
family to another. However, if you are running on a cataloging system, never use the 
VOLUME ADD WFL statement to add a family that does not have a unique family 
name. To avoid conflicts between the name of the backup halt/load family and the active 
haltlload family, you can use the following procedure to make backup haltlload families: 

1. Relabel the backup disk with the LB (Relabel Pack) system command to have a 
temporary alias. 

2. Do all the copy and CM command operations with the alias. 

3. Save the unit with the SV (Save) system command. 

4.. Relabel the disk with the LB command to have the proper name. 

5. Use the POWER (Power Up!Down) system command to power down the disk drive 
unit. 

6. Store the backup disk offline. 

If these precautions are not taken, the system repeatedly issues the error message 
"DUP FAMILYNAME" during the copy and CM command operations. 

8600 0668-000 



Section 9 
Disk Resource Control System 

The disk resource control (DRC) system is an optional feature that provides the 
ability to control disk space usage on a per user basis. Its information resides in the 
SYSTEM/USERDATAFILE; disk resource controls can be specified through the 
SYSTEM/MAKEUSER utility or through the programmatic interface to USERDATA. 
The DRC system is not a security system, but normal security checking occurs. The 
DRC system does not support interchange disk packs. 

The DRC system enables site managers to control the following allocations of disk space: 

• The amount of space on a family at any point in time that a user can have for 
permanent files 

• The amount of space on a family on an ongoing basis (disk integral) that a user can 
have for permanent files 

• The total amount of temporary space on the system at anyone time that the task of 
a user can have 

ORe System Features 
. The following information tells about using the DRC (Disk Resource Control) system 

command, limiting the use of permanent files, limiting the use of temporary files, and 
handling user errors. 

Using the ORC System· Command 

The DRC (Disk Resource Control) system command can be used to make the disk 
resource control system active or inactive. A halt/load is requireu after the system 
is turned on to actually bring up the DRC system. The command can also be used to 
inquire about the current state of the DRC system and to perforin certain maintenance 
operations. Refer to the A Series System Commands Operations Reference Manual for 
more information about the DRC system command. 

You can also use a selection on the MARC System Control screen to perform the DRC 
command. 

Handling Permanent Files 

The DRC system allows site management to designate disk resource controls for a 
user. The information concerning these controls resides in the user's entry in the 
SYSTEM/USERDATAFILE and is designated by using the SYSTEM/MAKEUSER 
utility. The DRC system does not need to be active for user specifications to be made. If 

8600 0668-000 9-1 



Disk Resource Control System 

9-2 

a user entry in the SYSTEMfUSERDATAFILE does not contain disk resource controls, 
no disk resource controls are enforced for that user. 

A user entry in the SYSTEMfUSERDATAFILE can designate the disk resource controls 
for a list of families. Each family is an entry in the family list and can contain usage and 
limit information. The DRC system stores in each family entry of the family list the total 
amount of permanent file space currently owned by a user along with the disk integral 
(the maximum possible space limit on an ongoing basis). The DRC system updates 
values in the SYSTEMfUSERDATAFILE at the following times: 

• When a permanent file is expanded 

• When a temporary file is changed to a permanent file 

• When a permanent file is crunched 

• When the ownership of a file is changed 

• When a permanent file is removed 

• When a file is shrunk or expanded with the EXCHANGE intrinsic 

• When a file is changed from temporary to permanent with the CHECKPOINT 
intrinsic 

Each listed family can designate a maximum space limit to be owned by the user at any 
one time as well as a maximum possible space limit on an ongoing basis. Either or both 
of these limits can be designated as unlimited. If either limit is designated as unlimited, 
usage information is gathered, but the limit is not applied. 

Defaults can also be designated for the space limits for families not included in the list of 
families for the user. The DRC system uses these defaults to determine user limits when 
someone is using a family that is not designated in the list of families. If the defaults are 
0, the user can allocate space only on the families designated in his family list. Either or 
both of the default limits can be designated as unlimited. If either limit is designated as 
unlimited, usage information is gathered, but the limit is not applied. The defaults can 
be designated without specifying a family list. 

The DRC system makes entries in the family list whenever space is allocated for a 
permanent file for a user on a family that was not previously in the family list. The 
default limits of the user are assigned to the family entry. For information about making 
disk resource control specifications in the SYSTEMfUSERDATAFILE, refer to the 
information on MAKEUSER in the A Series Security Administration Guide. 

The system enforces disk resource controls when a user allocates space for a file if the 
DRC system is active. User actions that cause space allocation can include changing a 
temporary file into a permanent file and changing the ownership of a file. When the 
user who is allocating space is the owner of the file, the limits enforced are the limits 
designated in the SYSTEMfUSERDATAFILE for that particular user. When a user 
attempts to allocate space for a file owned by someone else, the space limits applied are 
those of the owner. Files that do not reside under a usercode in the system directory 
(* files) are not limited by the DRC system. 

The DRC system does not limit space allocation for the following files: 

8600 0668-000 



Disk Resource Control System 

• DMSn database files 

• Job code files created by WFL 

• Recovery files created by MCSs (files of FILEKIND RECOVERYFILE) 

• Overlay files and other such system files 

• Backup files created under the default system directories 

Handling Temporary Files 

Site managers can designate an overall temporary file space limit for a user that is 
applied to all tasks initiated by that user.· This information resides in the user's entry in 
the SYSTEM/USERDATAFILE. 

Site managers can also designate a temporary file limit for a task by assigning the task 
attribute TEMPFILELIMIT for that task. The current in-use value can be interrogated 
by using the TEMPFILEMBYTES task attribute. For more information regarding 
these task attributes, refer to the A Series Task Attributes Programming Reference 
Manual. For information about making disk resource control specifications in the 
SYSTEM/uSERDATAFILE, refer to the information on MAKEUSER in the A Series 
Security Administration Guide. 

Disk resource controls for temporary files are enforced when the system attempts to 
allocate space for a temporary file. The DRC system does not allow a process to exceed 
the specified limit. 

Handling User Errors 

The DRC system detects errors when a user exceeds or attempts to exceed a family 
in-use limit or a temporary file limit, or when a user exceeds a family integral limit. After 
it detects the error, the DRC system informs the user about the error. 

The system treats disk resource control errors as a form of I/O error. You can handle 
them programmatically as with other I/O errors. Programs that do not programmatically 
handle disk resource control errors are discontinued as they would be for any other I/O 
error. 

Except for Message Control Systems (MCSs), the first disk resource control error 
encountered for each file causes an error message to be displayed for the program. The 
message gives the exact nature of the error. 

After any disk resource control error, you can interrogate the STATE file attribute 
(IORESULT or IOERRORTYPE:file attribute for direct I/O) to determine the exact 
nature of the error. Programmatically handling a disk resource control error does 
not allow the program to bypass the error; it only prevents the program from being 
discontinued. 

When library maintenance encounters disk resource control limit errors, it handles 
them in a somewhat different but compatible manner. When a library maintenance 
task encounters a disk space limit error, the system displays an error message and skips 

8600 0668-000 9-3 



Disk Resource Control System 

the file that encountered the error. An error also causes the task value to be given the 
value 1; this action allows the user to check if something went wrong during the library 
maintenance run. The limits on temporary files are not applied by library maintenance. 

When BNA file transfer encounters a disk space limit error, BNA displays an error . 
message and does not copy the file. 

If the user receives a family in-use limit error, he can make space available space by 
removing files that belong to him from the family. If the user receives a family integral 
limit error, he cannot allocate space until the integral usage value for his family in the 
SYSTEM/USERDATAFILE has been changed to less than the integral limit. 

Refer to the A Series File Attributes Programming Reference Manual for more 
information about the DRC limit errors that can be returned. Refer to the 
AVAILABLE file attribute for values that can be returned as a result of the 
CLOSE system command. Refer to the file attributes STATE, IORESULT and 
IOERRORTYPE for values that can be returned by read or write operations. 

Warning the User about Family Substitution Changes 

CANDE displays warning messages during the log-on process or at any time that a user 
changes his family substitution if the SYSTEM/USERDATAFILE entry of the user 
would prevent him from allocating space on his primary family. 

ORe Operations 
The following information explains how to operate the DRC system. 

Activating the ORC System 

9-4 

Perform the following set of operations to activate the DRC system: 

1. Enter the following system command: 

SL DRCSUPPORT = <drcsupport code file> ON <family name> 

On the release tapes, < drcsupport code file> is called SYSTEM/DRCSUPPORT. 

2. Enter the following system command: 

DRC + 

The system displays the following message in response to the command: 

THE DRC SYSTEM WILL BE ACTIVE AFTER THE NEXT HALT/LOAD 

3. Halt/load the system. 

8600 0668-000 



Disk Resource Control' System 

When the system comes back up, the DRCSUPPORT library is brought back up. 
The first time that the system is activated, the DRCSUPPORT library comes up on 
a "NO FILE" RSVP for the file SYSTEM/DRC/F AMIL YAUDIT on the halt/load 
pack. Enter OF to create the file. The DRC system is now active. 

Note: The system waits for the DRC system to become active before 
system initialization is completed. Jobs are queued to prevent the 
manipulation of usercoded files before the DRC sYstem is active 
so that correct disk space usage values can be recorded. While 
the system is waiting for the DRC system to initialize, it displays 
an RSVP message that gives you the option to continue system 
initialization with an inactive DRC system. 

WARNING 

Jobs queued during DRC initialization can be started before DRC is active by 
using the FS (Force Schedule) system command. However, be aware that in 
doing so, you might cause unexpected results if the job handles usercoded 
files. 

The system ignores any attempt to change or remove a usercoded file before DRC 
is initialized. The system can execute a WFL COpy statement before DRC is 
initialized, but DRC does not account for any disk' space usage that was affected by 
the COpy statement. Incorrect DRC disk space usage can also occur if you use the 
primitive ??COPY system command to duplicate usercoded files during DRC system 
initialization. 

To ensure that the existing disk space usage is correctly recorded by the DRC 
system, disk resource controls should be established for all usercodes defined in the 
SYSTEM/USERDATAFILE before the DRC system is activated. Refer to "DRC 
Restrictions" later in this section. 

Deactivating the ORe System 

To deactivate the DRC system, enter the following system command: 

DRC -

The system responds with the following message: 

THE DRC SYSTEM IS TERMINATING 

The DRCSUPPORT library is brought down and leaves the mix. The DRC system is 
now inactive. 

You can also use the DRC - command to cancel a pending DRC + where the DRC + 
command has been entered but a halt/load has not yet been performed. 

8600 0668-000 9-5 



Disk Resource Control System 

Making Inquiries about the Status of the ·ORe System 

To inquire about the status of the DRC system, enter the following system command: 

DRC 

The system responds with one of the following messages: 

THE DRC SYSTEM IS INACTIVE 

THE DRC SYSTEM WILL BE STARTED AFTER THE NEXT HALT/LOAD 

THE DRC SYSTEM IS INITIALIZING 

THE DRC SYSTEM IS ACTIVE 

THE DRC SYSTEM IS TERMINATING 

For more information about the DRC system command, refer to the A Series System 
Commands Operations Reference Manual. 

Creating SYSTEM/USERDATAFILE Entries for Disk 
Resource Control 

9-6 

This information provides various examples of how you can use the 
SYSTEM/MAKEUSER utility to set up SYSTEMfUSERDATAFILE entries with disk 
resource controls. Refer to the information on MAKEUSER in the A Series Security 
Administration Guide for more information about syntax and semantics for DRC 
SYSTEM/USERDATAFILE specifications. 

Disk resource control limits and usage values are in units of megabytes ( 2 ** 20 bytes) 
for OTHERF AMIL YLIMIT, F AMIL YLIMIT, and F AMIL YINUSE. DRC limits and usage 
values are in units of megabyte days for OTHERF AMILYINTLIM, F AMIL YINTLIMIT, 
and F AMIL YINTEGRAL. A limit designated with a negative value is treated as 
unlimited. 

To ensure the correct recording of disk space usage by the DRC system, a user entry in 
the SYSTEM/USERDATAFILE should have disk resource controls established before 
any files are created under that usercode. Refer to "DRC Restrictions" later in this 
section. 

8600 0668-000 



Disk Resource Control System 

Examples of SYSTEM/USERDATAFILE Entries 

The following SYSTEM/MAKEUSER examples show how you can designate various 
limits for the SYSTEM/USERDATAFILE of a specific user. 

Example 1 

USER DRCUSER MINPW=l MAXPW=l PASSWORD=DRCPASSWORD; 

This user is not limited by the DRC system, and in-use values are not accumulated. 

Example 2 

USER DRCUSER OTHERFAMILYLIMIT = -1 OTHERFAMILYINTLIM = -1; 

This user is not limited by the DRC, but usage values are gathered for all families on 
which the user allocates space. 

Example 3 , 

USER DRCUSER FAMILYLIST AT FAMILYNAME = "MYPACK II (FAMILYLIMIT = -1 
FAMILYINTLIMIT = -1); 

This user can allocate space only on family MYP ACK because OTHERF ~YLIMIT 
and OTHERF AMILYINTLIM are not designated and are therefore O. The amount 
of space that the user can allocate on MYP ACK is not limited, but usage values are 
gathered for it. 

Example 4 

USER DRCUSER OTHERFAMILYLIMIT = -1 OTHERFAMILYINTLIM = -1 
FAMILYLIST AT FAMILYNAME = "MYDISK" 

(FAMILYLIMIT = 2.5 FAMILYINTLIMIT = -1), 
AT FAMILYNAME = IIMYOTHERDISK II 

(FAMILYLIMIT = 10 FAMILYINTLIMIT = 900); 

This user can allocate space on MYDISK up to 2.5 megabytes. On MYOTHERDISK he 
can allocate up to 10 megabytes or until 900 megabyte days. He is not limited on any 
other families, but usage values are gathered for them. 

Example 5 

USER DRCUSER OTHERFAMILYLIMIT = 10 OTHERFAMILYINTLIM = 1000 
FAMILYLIST AT FAMILYNAME = "MYDISKII 

(FAMILYLIMIT = 20 FAMILYINTLIMIT = 2000); 

This user can allocate space on MYDISK up to 20 megabytes or until 2000 megabyte 
days. On any other family, he can allocate space up to 10 megabytes or until 1000 
megabyte days. 

8600 0668-000 9-7 



Disk Resource Control System 

Example 6 

USER DRCUSER; 

This is an inquiry about DRCUSER as it was set up in Example 5, with space 
having been allocated under usercode DRCUSER on families MYDISK and DISK 
SYSTEM/MAKEUSER returns the following information: 

USER = DRCUSER 
MAXPW = 0 
OTHERFAMILYLIMIT = 10 
OTHERFAMILYINTLIM = 1000 
FAMILYLIST % GROUP: LENGTH=16 WORDS, 2 ENTRIES 

AT FAMILYNAME = ( IIMYDISK II 
) 

( FAMILYINUSE = 411 262333333333 11 % 2.200 
FAMILYLIMIT = 20 
FAMILYINTEGRAL = 411 2646666666 11 % 4.400 
FAMILYINTLIMIT = 2000 
FAMILYTIMESTAMP = 14:18:25 08/14/88 

) 
,AT FAMILYNAME = ( IIDISK" ) 

( CREATEDBYSYSTEM 
FAMILYINUSE = 411274D85000000" % 0.076 
FAMILYLIMIT = 10 
FAMILYINTEGRAL = 411 269374BC6A7P % 0.152 
FAMILYINTLIMIT = 1000 
FAMILYTIMESTAMP = 14:18:25 08/14/88 

) 

For the family MYDISK, the F AMIL YINUSE value is 2.2 megabytes and the 
F AMILYINTEGRAL is 4.4 megabyte days. For the family DISK, the F AMILYINUSE 
value is 0.076 megabytes and the FAMILYINTEGRAL is 0.152 megabyte days. The 
family list entry for DISK has been created by the DRC system with the default limits 
because the disk was not specified in the family list. 

Maintenance of Integral Limits 

After an integral limit is exceeded, the user cannot allocate space on the family until the 
security administrator changes the SYSTEMIUSERDATAFILE entry of the user. This 
process can be accomplished by changing the F AMIL YINTEGRAL usage value so that it 
is again below the F AMIL YINTLIMIT. 

SYSTEM/USERDATAFILE Entry Overflow 

9-8 

The DRC system makes entries in the family list whenever space is allocated for a 
permanent file of a user on a family that was not previously in the family list. If the 
DRC system needs to add to the family list of a user and there is not room in the 
SYSTEM/USERDATAFILE entry (the maximum size of a SYSTEM/USERDATAFILE . 
is 240 words), the DRC system tries to delete a family list entry and to log the fact 
that this has happened. The family list entry selected for deletion (if possible, a 

8600 0668"",000 



Disk Resource Control System 

CREATEDBYSYSTEM family) is the one with the least F AMILYINUSE amount. 
If two family lists have the same F AMILYINUSE amount, the one with the lowest 
F AMILYINTEGRAL is selected. If two family lists have the same F AMIL YINTEGRAL, 
the one with the oldest F AMIL YTIMESTAMP is selected. If it is not possible to find 
space in the SYSTEM/USERDATAFILE entry, the fact that this family list entry could 
not be put in the entry is logged. Refer to the SUMLOG information in the A Series 
System Software Support Reference Manual for more information about the records that 
were logged. 

DRe Restrictions 

While the DRC system is active, do not install a different SYSTEM/USERDATAFILE. 
For example, do not use the SYSTEM/MAKEUSER utility CREATE command. If you 
install a different SYSTEM/USERDATAFILE, it could adversely affect the DRC system. 

While the DRC is active, you cannot remove or change a *USERCODE/ = directory from 
any family. The *USERCODE/ = directorY is a pseudodirectory that contains all the 
files with usercodes; that is, it contains all files whose file names begin with a usercode 
instead of an asterisk (*). If you attempt this action, the system does not perform the 
remove or change, and it generates an error message. 

If a usercode is newly set up with disk resource controls while the DRC system is active, 
the F AMIL YINUSE count for that usercode does not include any space allocated for 
files created before the usercode was set up. To include such space in the usage values, 
the SYSTEM/DRC/F AMILYAUDIT file must be removed and a halt/load must then be 
performed to reactivate the DRC system. 

To ensure that all disk space usage is recorded correctly by the DRC system, establish 
disk resource controls for each user entry in the SYSTEM/USERDATAFILE before 
you first activate the DRC system. If the space usage of a user does not require that 
limitations be enforced by the DRC system, designate the default limits as unlimited. 
This designation enables usage values to be gathered for that usercode. After the DRC 
system is active, each new user entry that is added to the SYSTEMfUSERDATAFILE 
should have disk resource controls set up before any files can be created under that 
usercode. 

8600 0668-000 9-9 



9-10 8600 0668-000 



Section 10 
Mirrored Disk Feature 

On systems that use data link processor (DLP) I/O, the Mirrored Disk feature allows 
from two to four disks to be maintained as a mirrored set, that is, as exact copies of each 
other. 

This section provides an overview of the Mirrored Disk feature and covers the following 
topics: 

• Benefits of the Mirrored Disk feature 

• Requirements 

• Site options 

• Initiation 

• I/O handling 

• Operations 

Benefits 
The Mirrored Disk feature increases both system availability and data integrity. If one 
copy in a mirrored set is destroyed, goes offline, or experiences any irrecoverable errors, 
another online copy in the set will allow normal functioning to proceed. Disk mirroring 
is completely transparent to applications. . In the event of an error on one mirror, the 
application proceeds normally, and the system notifies the operator about the error. 

For mirrored disks, you should evaluate the backup and audit features used at your site. 
Because mirroring significantly decreases the possibility of data loss due to equipment or 
media malfunction, the number of available processing hours on a system is increased. 

Mirroring disks can also improve I/O throughput on disk subsystems that experience 
a high ratio of reads versus writes.. This improvement occurs because the MCP 
distributes the read operations equally to all the mirrors in a s~t. If a disk subsystem has 
a low ratio of reads to writes, the I/O throughput can be reduced, because writes must be 
issued to all mirrors in a set. The actual impact of mirrored disks varies according to the 
individual characteristics of the installation. 

Mirrors of existing disks can be created without bringing disks offline or interrupting use 
by the system. 

Requirements 
No special hardware is required for disk mirroring. However, disk units·must be 
available to allow for the redundancy. 

8600 0668-000 10-1 



Mirrored Disk Feature 

The Mirrored Disk feature applies to all supported disk types except memory disks and 
can be used with both cataloging and noncataloging file systems. 

Options 
You designate which disks are to be mirrored, the number of disks in a set, and the units 
on which mirrored disks are to reside. The Mirrored Disk feature puts few restrictions 
on these choices, except that disks within a given mirrored set must be of the same 
model. (See "Configuration Recommendations". in this section for system configuration 
guidelines and for the location of mirrors within a set.) 

Mter they are created, mirrored sets are maintained automatically across system 
interruption. Operator action is required only in certain exception conditions. 

You can remove mirrors from any mirrored set or create new mirrors for any set while 
the system is in normal operation and while the disks are in use. You can also move 
mirrored sets between systems and within systems. 

You can specify recovery options for any mirrored set with the MIRROR OPTION 
system command. This option determines the action to be taken after a halt/load if 
certain critical MCP information has been lost. 

Initiation 
When the Mirrored Disk feature is chosen for some or all of the disks in a System, turn 
on the MIRRORING option by entering the system command OP + MIRRORING. Then 
halt/load the system to create the internal structures needed for mirroring. Thereafter, 
you can create mirrors of existing disks by using the system command MIRROR 
CREATE. Other MIRROR commands will also be valid. 

You can also use the OP + MIRRORING command when you move a disk subsystem to 
a new system, or when you cold start a system with preexisting mirrored sets. Mter the 
system executes an OP + MIRRORING command, the system brings the mirrored disks 
online following the next halt/load. 

Creating Mirrored Disks 

10-2 

Mter mirroring is initiated, you can create mirrors of selected disks by using the system 
command MIRROR CREATE. This command copies the source disks and brings the 
destination disk online. The source disk can already be a part of an existing mirrored 
set. The source disks remain online during the copy process. 

The destination disk must not have any open files on it and must not be a member of a 
mirrored set when you issue the MIRROR CREATE COIIlID.8nd. The system overwrites 
all files on the destination disk during the mirror creation process. Therefore, before you 
enter the MIRROR CREATE command, copy to another disk any files you want to save 
from this disk. 

8600 0668-000 



Mirrored Disk Feature 

If errors occur while the process is copying data during mirror creation, the defective 
sectors are listed in a report file on the halt/load unit. The report file has the following 
name: 

CREATE/<source name>/FAMILYINDEX <source family index>/SECTORSINERROR 

Configuration Recommendations 

To ensure full redundancy of disks, it is best to maintain separate I/O paths to mirrors 
within a set. Because disk mirroring is managed by the MCp, failure of not only disks, 
but of controllers and other hardware can be handled if the system is so configured. 
However, maintaining separate paths is not required by the mirrored disk feature. The 
decision is up to the site manager. Other configuration options, such as multiple paths to 
disks through different controllers and exchanges, can be just as beneficial. 

I/O Handling 
I/O operations are handled differently for mirrored disks than for nonmirrored disks. As 
described in the following sections, read operations are issued to only one disk within a 
mirrored set, and write operations are issued to all disks within a mirrored set. 

In the following discussion, the terms online, offline, and pending have special meanings. 
Online refers to current members of a mirrored set that are available and synchronized. 
Offline refers to disks that are in a state of write lockout, are not ready, or are otherwise 
unavailable to the system because they are being audited. Pending disks are those that 
are returning from an offline to an online state, mirrored set members being created, and 
all members of a mirrored set that has members not yet seen by the system. All three 
states are mutually exclusive. 

Read Operations 

Reads are issued to each online disk in turn within a mirrored set. If an I/O error occurs 
on a read operation to a disk, the next disk in the mirrored set is selected and the read is 
issued to that disk. 

NOT READY and WRITE LOCKOUT exceptions cause the system to place the disk in 
an offline state and to start an audit for the disk. Any other read errors release the disk 
from the mirrored set. If errors occur to all online disks within a set, the application 
program receives an error on the I/O; otherwise, the errors are transparent to the 
application. 

Offline and pending members are not candidates for reads. 

Write Operations 

Write operations are issued to all online disks within a set. If an irrecoverable write 
parity error occurs, the system releases the disk from the set. For NOT READY and 
WRITE LOCKOUT errors, the system marks the disk offline and starts an audit for 

8600 0668-000 10-3 



Mirrored Disk Feature 

Audits 

the disk. In either case, the system notifies the operator, who should take appropriate 
action. An application program can receive an error on a write only if errors are. 
encountered by all online disks within a set. 

If an irrecoverable write error occurs on a mirror, the system releases the disk from 
the mirrored set and issues a message to the operator to indicate that the release has 
occurred. The system modifies the disk label so that you cannot use the disk without 
reconfiguring it with the RC (Reconfigure Disk) system command. In this situation, you 
must resolve the problem and decide whether or not to create a new mirror for the set. 

If a disk goes offline, the system automatically starts an audit for the disk and issues a 
message to the operator that identifies the disk as being in a WRITE LOCKOUT or NOT 
READY state. 

Whenever a write to a disk is directed to a mirrored set, it is recorded in an MCP table 
called the outstanding write list (OWL). When the writes to associated disks are 
complete, the system removes the entry from the OWL. After a halt/load, the OWL 
updates disks within a set so that they are identical. 

If the OWL is destroyed, the disks might not be identical., because the writes in process 
to a set might not have completed to all members of the set. The system command 
MIRROR OPTION allows you to specify appropriate action in the event the OWL is lost. 

An audit table of write operations is kept for offline mirrors. This audit table is a bit map 
of the disk in question. Each bit in the table corresponds to a fixed area on the disk. 
Therefore, the size of the audit table is fixed and is a function of the number of cylinders 
defined for the disk type. Whenever a write is issued to a mirrored set, corresponding 
bits are turned on in the audit table of each offline member. 

The audit table is abandoned if the offline disk is released from the mirrored set. Packs 
being audited at the time of a halt/load are released from the mirrored set. 

When an omine disk is returned to an online state, the system uses the audit table to 
update that disk. 

Operational Information 
Mirrored disks can be moved within a system just like nonmirrored disks. Mirrored 
sets can also be moved between systems and MCPs. 

Moving Packs within a System 

10-4 

You can move members of a mirrored set within a system while it is down with no ill 
effects. 

To mo~e a pack within a system, either use the system command MOVE or power off 
the disk drive and move the pack to a new drive. In either case, the pack being moved is 

8600 0668-000 



Mirrored Disk Feature 

audited just as any other offline copy. The rest of the mirrored set remains online and 
usable. After you have moved the pack to the new drive, the audit is applied to update 
the pack. 

For fixed media, you can copy data.to other units with the system command MIRROR 
CREATE. After the new copy is complete, you can release the source disk by using the 
MIRROR RELEASE command. 

Moving Packs between Systems 

It is possible to move mirrored sets between systems by physically removing them from 
one system and installing them in another. Before being moved, however, the mirrored 
set must be closed (prior to being freed). The system updates the disk labels to indicate 
that the disks are closed. After you move the mirrored set, ready it with the system 
command RY (Ready). When the disks are readied by another system, the new system 
reads the label to determine if the disk was closed before it was moved and to determine 
the number of valid copies in the mirrored set. 

If sets that were not closed are moved to a new system, they are not brought online as a 
set unless they have a recovery type specified as DMS using the MIRROR RECOVERY 
command (see the A Series System Commands Operations Reference Manual for more 
information) . 

Mirrored sets with a recovery type of DISCARD are broken (mirroring is discontinued) 
when one disk is brought online as a nomirlrrored unit. The other members of the set 
are released (the pack label is invalidated, the pack is not brought online, and a message 
is issued). 

Mirrored balt/load units cannot be used to halt/load on another system. This action. 
results in a dead stop. 

Offline Packs Returning Online 

When you bring a mirrored disk online, the system verifies that mirroring has been 
established for that system. If mirroring has not been established, the system displays 
the following message and terminates the process of bringing the disk online: 

PK<unit number> [<serial number>] «family name» ERR: 
MIRRORED PACK ON NONMIRRORED SYSTEM 

You can bring a mirrored disk online as a nonmirrored disk only by issuing an RC 
(Reconfigure Disk) or PG (Purge) system command for the closed unit. 

When a mirrored disk is readied on a mirroring system, one of the following conditions is 
required: . 

• The disk must have been closed prior to going offline. 

• The system must have a record of the disk in question. 

• The disk must have a recovery type of DMS. 

8600 0668-000 10-5 



Mirrored Disk Feature 

If the disk was closed, the disk is brought online when the other members are seen by 
the system, or when audits are begun (with a MIRROR AUDIT system command) for 
those members not yet seen by the system. 

If the disk was not closed, but the disk is recorded in the system tables, the system does 
one of the following: 

• If a halt/load occurred while the disk was offline or the disk encountered a parity 
error, the disk is released (that is, the disk label is invalidated and the disk is not 
brought online) and a message is issued. 

• If the disk went offline and is currently being audited, the audit is applied to the 
disk. When the audit is complete, the disk is returned online. 

• If the disk was online and is returning after a halt/load, it is brought online when the 
other members are seen by the system. Any writes that were outstanding at the 
time of the halt/load are applied. 

• If the OWL was corrupted or lost during the halt/load, the set is brought online only 
if it has a recovery type of DMS; otherwise, only one disk of the set is brought online 
as a nonmirrored unit, and the other members are released. 

• If a mirrored disk returning online has no history of being present on the current 
system (or the disk has been in use on another system) and the set was not closed 
(by means of the system command CLOSE), then the set is brought online only ifits 
recovery option is DMS. 

• Similarly, if the OWL is lost during a halt/load, only those sets with recovery option 
DMS are brought back online. When these situations arise for sets with recovery 
option DISCARD, only one disk is brought online as nonmirrored, and the other 
members are released. 

Following a halt/load (or when a mirrored set is moved to a new system), a set does 
not go online until all disks previously online (or previously part of the closed set) 
are visible to the system. If some of the members are absent, or the operator does 
not wish to wait for.all the members to be ready before using the set, the absent 
members can be forced into an audit state and the set brought online with the 
MIRROR AUDIT command. 

Sets that are in the process of being brought online are called partial mirrored sets. 
If a task is initiated that causes a list of partial mirrored sets to be displayed, and if 
that task becomes a waiting entry, the list of partial mirrored sets is red.i.splayed 
whenever a change occurs in the state of a mirrored set or when the operator 
reactivates the waiting entry using the system command OK. Partial mirrored disks 
are identified with a lowercase m in the system commands PER and OL. 

Recovery 

10-6 

When a system is halt/loaded with mirrored critical units (that is, units required for the 
system to run), offline copies of those units. are automatically audited until they are seen 
by the system .. This allows the system to start and you to take appropriate action if one 
of the members is missing or corrupted before, during, or after the halt/load. N oncritica1 
units are handled as described in "Offline Packs Returning Online" in this section. 

8600 0668-000 



Mirrored Disk Feature 

Note: You cannot move mirrored haltlload units between mirrored systems. 
The result is a dead stop. 

During a halt!load, all needed structures are created or recovered. The mirror 
information table (MIT), which contains information concerning all mirrored sets on 
the system, is stored on the halt!load disk as an MCP structure and is restored from 
there after a halt!load. The OWL, which keeps track of writes in process to mirrored 
sets, is preserved in memory. If this structure is corrupted or lost during a halt/load, 
only mirrored sets with the DMS recovery option are brought online after the halt !load. 
,Other mirrored sets are broken and only one member is brought online as a nonmirrored 

, member. 

The audit tables for offline disks are not preserved across halt/loads and the offline disks 
are released from the set when they are brought online. Packs having their audits 
applied and incomplete online creations are also released upon return to service. 

Mirror Deallocation 

You can deallocate mirror'ed copies from a mirrored set by using the MIRROR RELEASE 
system command. Different command forms allow you to release a designated disk, to 
release offline copies of a designated disk, and to release all copies of a designated disk. 
During normal system operations, you can release copies at any time. 

Mirrors being audited, created, or having audits applied are automatically released from 
sets after a halt/load. Units receiving parity errors are also released if they are not the 
last online member of a mirrored set. 

Whenever a disk is released from a mirrored set due to an operator command, a system 
error, or loss of the OWL, the label of the disk is invalidated, which requires you to enter 
an LB (Relabel Pack or Host Control Unit), a PG (purge), or an RC (Reconfigure Disk) 
system command before you can use the disk again. If the label cannot be updated at the 
time, the label is invalidated when next seen by the system. This feature is necessary to 
prevent out-of-date members from replacing more recent copies of a unit. 

Caution 

It you ready out-ot-date members on another mirroring system, they can be 
brought online. Because this could lead to data corruption, take special care to 
prevent this trom occurring. 

Transferring MCPs 

When you create an alternate halt/load family with the system command eM <file 
name> ON <family name> , system mirror information is copied to the disk on which 
the alternate MCP is established. However, subsequent changes in system mirror 

8600 0668--000 10-7 



Mirrored Disk Feature 

information is not automatically copied to the alternate haltlload family unless you 
establish the disk as a standby halt/load family by including a + STANDBY clause at the 
end of the CM command. If you do not use the + STANDBY clause, certain actions that 
involve mirrored sets will invalidate the accuracy of the mirror information table on that 
alternate haltlload family. 

The actions that would invalidate the mirror information include the following: 

• Using MIRROR system commands 

• Bringing mirrored units online 

• Releasing mirrored units due to exception conditions 

• Auditing mirrored units due to exception conditions 

• Closing a mirrored set 

If any of these actions occur after you issue the CM command, then when a haltlload 
occurs from the alternate haltlload family, the system will come to a dead stop. To 
resolve this situation, you must haltlload back to the original haltlload unit. 

A similar situation occurs if you attempt to transfer haltlload units between mirroring 
systems when an alternate halt/load family is moved to a different system that is using 
the OP + MIRRORING option. In such a case, you should reestablish the alternate 
haltlload family as a standby halt/load family before you attempt to haltlload. To 
reestablish the family as a standby halt/load family, issue the following command syntax 
for the disk on the new system: 

eM + STANDBY ON <family name> 

Otherwise, when you halt/load from that alternate halt/load family, the result will be a 
dead stop. 

Preca utions 

The MIT on the halt/load family and the OWL in memory keep track of the status of the 
mirrored packs on a system. The MIT also contains records of packs that have been 
removed from a mirrored set, but whose labels could not be invalidated. These records. 
are the only protection against such an outdated pack returning online. When you are 
changing haltlload units, if the new halt/load unit has an outdated MIT (that is, the 
timestamps on the MIT and the OWL do not match), this protection is removed. Data 
corruption can occur if you return such an outdated pack online. Therefore, keep the 
following recommendations in mind: 

• Instead of maintaining a separate, backup haltlload unit, mirror the current haltlload 
unit. This ensures that the MIT will not be lost unless both the haltlload disk and its 
mirror are both lost. 

• Establish one or more standby halt/load families. 

10-8 8600 0668-000 



Mirrored Disk Feature 

• If you choose to maintain a separate backup halt/load family that is not an active 
standby haltlload family, update that unit with the CM (Change MCP) system 
command every time a pack is added or removed from the set of mirrored packs 
currently online. Update the backup, halt/load unit in the following cases: 

When a pack is added to a mirrored set 

When a pack is released from a mirrored set 

When a pre-existing mirrored set is brought online 

When a mirrored set is closed 

After a haltlload 

• If a dead stop occurs, haltlload back to the original haltlload unit. If this cannot be 
done (as when the original halt/load unit has failed), you must reinitialize the OWL 
in memory to match the MIT on the new haltlload unit. Note that you must take 
extreme care not to bring outdated packs online, or severe data corruption could 
result. You can remove the OWL from memory in one of the following ways: 

8600 0668-000 

For EMS systems, use UTILOADER to haltlload to the new haltlload unit 

Use UTILOADER to warm start the system 

Reinitialize memory by either powering the system off and on, or for host data 
unit (HDU) and resource management module (RMM) systems, remap memory 
at the maintenance station. 

10-9 



10-10 8600 0668-000 



Section 11 
Memory Disk Feature 

Overview 
Memorydisk is the use of memory as if it were a disk unit. Memory disk provides file 
access with extremely high data-transfer rates and relatively little access time. You can 
declare one or two units of memory disk, each with up to 10 megawords of memory. You 
can use the units, with certain restrictions, in the same way that you use any other disk. 
The unit designations are retained across halt/loads. Files on the units are retained 
across most halt/loads; vulnerability of data is discussed later in this section. Memory 
disk is supported on all A Series systems. 

Memory disk is established when you use the RECONFIGURE (Reconfigure System) 
system command to reconfigure to a group that contains a memory disk declaration. 
Instructions on how to make a memory disk declaration are provided in the A Series 
System Configuration Guide. The system allocates the requested amount of memory (or 
as much memory as is available) and fills memory disk with zeros. The location of the 
allocated memory is preserved on the halt/load unit so that the memory disk areas can 
be found after a halt/load. Each memory disk unit is reconfigured and brought online 
automatically if you supply the family name in the declaration. You must manually 
reconfigure unnamed memory disk units by using the RC (Reconfigure Disk) system 
command. You can use a memory disk family like any other family with the following 
exceptions: the memory disk cannot be the halt/load family, and it cannot contain a 
dumpdisk file. 

Vulnerability of Data 
Memory disk offers high-speed file access in a convenient and flexible manner, but you 
should be aware that memory is a volatile medium which is vulnerable to power failure 
and memory reconfiguration. Therefore, you should carefully choose the files that are to 
reside on memory disk. You will have to reconstruct those files after any system event 
that causes memory to be altered or corrupted. 

Possible candidates that you might want to put on memory disk are read-only data files, 
code files, and temporary files. You should also consider using memory disk for the 
system command DL SORT and your data comm information files (assuming that you 
have a backup copy). 

Creating a Memory Disk Unit 
You can create a memory disk unit by modifying the configuration file for your system to 
add a new declaration in the MEMORY section of your system group. The declaration 
specifies a unit number and the amount of memory associated with the unit. You can 
optionally specify the family name or base unit of the family. 

8600 0668-000 11-1 



Memory Disk Feature 

You can specify the amount of memory either as a number of words or as a number of 
pages. A page is 1,298 kilowords, which is 1,329,152 words because a kiloword is 1,024 
words. In either case, the system uses an amount of memory that is the lower multiple 
of 512 kilowords - approximately half a page-nearest the amount that you specify. 

For specific information on modifying the configuration file, refer to the A Senes System 
Configuration Guide. 

How MemoryOisk Is Initialized 
Memory disk is allocated above the system memory limit during memory establishment. 
A warning message is issued if a unit has insufficient usable memory. The amount and 
location of the memory are saved to allow the unit to be reestablished after a halt/load. 

The memory disk units are established during peripheral initialization. Each unit is 
defined as though it were a physical head-per-track disk device with a maximum of 10 
modules and with 2 switches per storage unit (SU). Each SU contains the equivalent of 
34,952 disk sectors (approximately 1 megaword). Each switch contains the equivalent of 
17,476 disk sectors (approximately 512 kilowords). The size of a memory disk is always 
an integer number of switches. 

If you designated a family name for the memory disk unit in the configuration file, the 
system automatically reconfigures and readies the unit whenever necessary. This 
process happens on the next halt/load after you reconfigure your system or change 
the memory configuration of your system. If you did not specify a family name for the 
memory disk unit in the configuration file, you must manually reconfigure the memory 
disk unit whenever necessary by using the system command RC (Reconfigure Disk). 

Memory Disk Halt/Load Recovery 
All memory used by memory disk is reestablished from information saved on the 
halt/load disk. The memory areas marked for memory disk are not overwritten by the 
processors during memory test. If the current memory configuration does not match 
the saved configuration or if the memory disk areas have been overwritten, the system 
marks all memory disk areas as available, removes the saved information, and displays 
an error message. The memory disk configuration entry is then in its initial state. 
Memory is reallocated as described in the previous section, and the unit is reinitialized. 

Memory Reconfiguration 
Some memory reconfiguration commands cause memory disk to be reinitialized on 
the next halt/load. The system issues an appropriate request for response (RSVP) 
before the reconfiguration is performed. If you elect to proceed with the memory . 
reconfiguration, you should be aware that the next scheduled or unscheduled halt/load 
will cause memory disk to be reinitialized. 

8600 0668-000 



Memory Disk Feature 

I/O Handling 
Statistics on memory disk I/O operations are handled in the same way as other I/O 
operations except that the processor time used by the data transfer procedure is charged 
to the task as processor time only. The bytes transferred are included in the MCP or 
user utilization counts as appropriate. The bytes are also counted into separate memory 
disk MCP and user subtotals. Because memory disk operations are synchronous (no I/O 
interrupt occurs), they do not contribute to either the IOFINISH or IOINTERRUPTS 
system counts. 

Any irrecoverable error that occurs during a memory disk operation is reported in the 
logical result descriptor. The normal system action occurs for correctable memory 
parity errors, so they are not irrecoverable. All other errors are irrecoverable and are 
not retried. Memory parity errors and memory fail errors are reported as I/O parity 
errors but are also logged normally as memory errors. Missing pages are reported as not 
ready I/O results. The memory protect bit of the Input/Output Control Word aoCW) is 
honored only if the MCP is compiled with the DIAGNOSTICS option. Memory protect 
errors are reported as descriptor errors. 

Operational Restrictions 
Memory disk units are pseudo head-per-track disk units. As such, they have the 
inherent operational characteristics of a head-per-track disk. The following restrictions 
apply to a memory disk unit: 

• It cannot be the halt/load unit. 

• It cannot contain a dumpdisk file. 

• It cannot be designated in a FREE (Free Resource) system command. 

• It cannot be a member of a disk family that contains nonmemory disk units. 

• Peripheral test driver (PTD) tests cannot be run against it. 

• It cannot be a mirrored unit. 

Operational Considerations 
When using memory disk, take the following considerations into account: 

• A system dUmp does not dump the contents of memory disk. 

• Reverting to a pre-Mark 3.6 MCP causes all memory disk pages to be marked as 
available and the units to disappear. Going forward to a Mark 3.6-or-later MCP 
again reinitializes memory disk. The changes to the configuration file for memory 
disk are transparent to pre-Mark 3.6 MCPs. 

8600 0668-000 11-3 



Memory Disk Feature 

Explanation of Selected System Commands 
The system commands that follow display information about memory. These commands 
are given in alphabetical order. For additional information about these system 
commands, refer to the A Series System Commands Operations Reference Manual. 

CU (Core Usage) 

This command displays only the amount of memory available for system use. The 
numbers do not include memory disk. 

MM (Memory Module) 

The following example shows the MM display on an A15 system using MCP/AS: 

MM 

MSM 0 
24M WORDS INUSE 

MEMORY USAGE: 
SYSTEM 12M WORDS 
MEMORY DISK 12M WORDS 

MSM STATUS 
SIM MSUS ONLINE MSUS SAVED 
0 0-7 NONE 
1 2-7 0-1 
2 0-3,5-6 4,7 
3 0-1,3-4,6-7 5 

MSUS TO-BE-SAVED 
6-7 
2-3,6-7 
5-6 
6-7 

OL (Display Label and Paths) 

This command shows memory disk units as type MD: 

OL DK300 

DK 300*MD (READY: 0-1) [000300] #1 MEMDISK (2) 
CREATED ON: 06/19/86 AT 18:48:31 
DLP STATUS 
* NO PATHS * 

P_ER (Peripheral Status) 

This command shows memory disk units as type MD: 

PER DK 

----- DK STATUS -----
300*MD (READY: 0-1) [000300] #1 MEMDISK (2) 

11-4 8600 0668-000 



Memory Disk Feature 

U (Utilization) 

This command includes memory disk I/O subtotals in its display. An additional 
component of the I/O portion of the display identifies those I/O requests issued to 
memory disk as subtotals of user and MCP I/O requests. 

8600 0668-000 11-5 



11-6 8600 0668-000 



Section 12 
Recovery 

The disk subsystem can encounter three types of problems: 

• Hardware problems, such as a broken disk drive or a damaged or destroyed disk 

• Operator error, such as the accidental reconfiguring of a disk or the accidental 
removal of files 

• Directory software errors, such as directory I/O errors, directory data corruption, or 
MCP program errors 

Although these problems are very rare, it is important that your installation be able to 
recognize and differentiate these problems so that they can be resolved in the shortest 
amount of time with little or no loss of data. This section explains the following error 
recovery procedures: 

• How to isolate defective sectors on a disk 

• What to do if base packs or continuatiori packs are damaged or destroyed 

• When disks can be moved from one drive to another to eliminate errors 

• When data can be moved from one disk to another to eliminate errors 

• What to do if directory errors are encountered 

• What to do if errors are encountered during family rebuilds 

• How to fix a defective archive. directory 

Before the system can use the data or directories on a disk, you must complete the 
following procedure without encountering any errors: 

1. Place the disk on a drive. 

2. Turn on the drive. 

3. Acquire (if necessary) and ready the disk drive on which the disk is mounted. 

The system then has to read the disk label and, if the disk contains a flat directory, read 
the directory file header. 

Processing of the disk stops if any of these steps fail. Usually, ha:rdware I/O errors cause 
these failures, and these errors must be corrected before the data on the disk can be 
used. Sometimes you can correct an I/O error by closing the disk and then readying it 
again. If this process does not solve the problem, your only recourse is to move the disk 
to another disk drive. 

After the disk label and flat directory header have been successfully read, the system 
provides various techniques for overcoming errors. You can isolate defective sectors, 
replace the disk, or move the data from the disk to another disk. 

8600 0668-000 12-1 



Recovery 

Isolating Defective Sectors 
When an I/O error occurs while the system is using or trying to use a disk file, the entire 
disk is not necessarily damaged. A group of sectors on the disk might be defective, and it 
is possible to isolate these bad sectors so that the rest of the disk can still be used. 

. When the system encounters an I/O error, it automatically attempts the I/O operation 
again and places an entry in SYSTEM/SUMLOG that describes if the error was 
corrected in the retry or if the error was not corrected and the I/O operation was 
discontinued. These log entries and the I/O error messages that are displayed on the 
ODT can be used to determine if the problem is caused by a few defective sectors or if 
the entire disk is damaged. 

If the log entry or the I/O error messages repeatedly designate a certain range of sectors, 
the damage is probably limited to those sectors. Also, if the I/O error affects only a few 
files, but the rest of the files on the disk are accessed properly, that is an indication that 
the problem was caused by a few defective sectors. 

You can use the SCAN (Scan Disk or Pack Volume) system command to read a disk and 
record any defective sectors that were encountered during an attempt to read a file on 
the disk. tple SCAN operation is a time-consuming process, and should be done at night 
or another time when system usage is minimal. 

At the end of mirror creation, errors found on sectors not spanned by BADDISK 
areas are reported in a file on the halt/load family named CREATE/ < source 
name>/FAMILYINDEX <source family index>/SECTORSINERROR. This report 
provides a quick alternative to SCAN in locating defective sectors discovered during the 
creation of a mirrored set. 

After you have determined which sectors are defective, use the RES (Reserve) system 
command to transfer the data stored on the defective sectors to other sectors. Use 
the AS BADDISK clause of the RES command so that the system marks the defective 
sectors so they cannot be used again. 

Refer to the A Series System Commands Operations Reference Manual for more 
information about the SCAN and RES commands. 

Dealing with Damaged or. Destroyed Disks 
A disk can be considered damaged if it experiences irrecoverable I/O errors or if the 
directory is corrupted. A disk is considered destroyed if it is physically broken. There 
are different ways to resolve the problem of a damaged or destroyed disk, depending on 
whether the disk is a base pack or a continuation pack. This subsection discusses the 
techniques for replacing both types of disks. 

Replacing a Base Pack 

12-2 

If the base pack is destroyed and the flat directory is not duplicated on another family 
member, you must use the RC (Reconfigure Disk) system command to reconfigure a new 
family and then copy all the required files back onto the family from the latest backup 

8600 0668-000 



Recovery 

tapes. You cannot reconfigure a new base pack in place of the old one, even if the same . 
serial number is used, because the fiat directory on the old base pack is lost. 

The system marks all the continuation packs in a family with the date and time that 
the base pack was reconfigured. When you reconfigure a new base pack with the RC 
command, there is no link between the new base pack and the old continuation packs. If 
the system did not take this precaution, continuation packs from an old family would get 
confused with continuation packs for the new family. You can check the creation date 
and time of a disk family with the OL (Display Labels and Paths) system co~d. The 
OL command syntax is as follows: 

OL PK <unit number> 

The variable < unit number> is the unit number of the disk drive on which the disk is 
mounted. 

If you are running on a cataloging system and need to reconfigure a new base pack, you 
must take special steps to avoid losing all the catalog information for the old family. The 
system asks if the new family should inherit all the backup information of the old family 
by displaying the following message on the ODT: 

PK <unit number> OK TO RE-ENTER INTO VOLUME LIBRARY 

Enter the reply OK to retain the catalog information. Refer to "Replacing a Damaged 
Volumed Disk" in Section 5 for more information about this subject. 

Replacing a Continuation Pack 

If a continuation pack is destroyed, you have more choices. The base pack with the fiat 
directory is still intact, so files on the base pack and other continuation packs are still 
usable. When programs try to access files that are partially or totally stored on the 
missing continuation pack, the system responds with the following RSVP message: 

REQ <family name> <serial number> 

You then must discontinue those programs by using the DS (Discontinue) system 
command. 

You can create a substitute continuation pack by using the RC (Reconfigure Disk) system 
command. The RC command syntax is as follows: 

RC PK<unit number> BP = <serial number> FAMILYINDEX = <family 
index number> 

The variable < unit number> is the unit number of the disk drive the substitute disk is 
mounted on, the variable < serial number> is the serial number of the base pack, and 
the variable < family index number> is the family index number of the missing disk. 

The system then replaces the old continuation pack with the new one and removes all 
the files in the entire family that had portions stored on the old continuation pack. To 
retain files that had portions stored on the missing continuation pack, add the KEEP 

8600 0668-000 12-3 



Recovery 

clause to the RC command. The system does not completely remove the files, but marks 
them as having some areas missing. Programs then can use some of the data in the files, 
but not data from the areas that were on the missing continuation pack. If a program 
tries to access data from the areas that were on the missing continuation pack, an I/O 
error occurs. 

Moving Disk~ to Another Disk Drive 

12-4 

When a disk drive breaks down or appears to be receiving many I/O errors, it might be 
possible to correct the problem by moving the disk to another drive. This technique 
applies only to removable media such as Model 677 disks; you cannot move fixed media 
such as Model 207 disks. 

Caution 

Before moving a disk from one drive to another, especially a disk that has 
experienced errors, have a Unisys field engineer inspect the disk to make sure that 
the surfaces of the disk have not been marred or scratched. A scratched disk can 
in turn scratch the disk drive read/write heads. Scratched read/write heads can 
in turn scratch other disks mounted on them, and so on. Your installation might 
want to keep written records of the drives that disks have been mounted on, by 
time and date. When a scratched disk surface or a scratched disk read/write head 
is discovered, you will know which other disks and drives to inspect for damage. 

If you decide to move a disk to avoid I/O errors, the first thing you must do is to locate 
an available disk drive. This unit must be acquired and not saved, not reserved, and not 
in-use by another disk. If the disk that you want to move is not in-use, all you have to do 
is power off the disk and move it to the other drive. If the disk that you want to move is 
in-use, you must enter the MOVE (Move Job/Pack) system command with the following 
syntax: 

MOVE PK <source unit number> TO PK <destination unit number> 

The variable < source unit number > is the unit number of the original disk drive and 
the variable < destination unit number> is the unit number of the destination disk 
drive. The system does some checking and then tells you to manually move the disk. 
The following is an example of the MOVE command: 

MOVE PK 67 TO PK 143 

On systems other than the A 12 and A 15, you cannot move some families (such as the 
family on which the JOBDESC file is stored) by using this technique. On A 12 and A 15 
systems, you can move any disk by using the MOVE command. 

Sometimes the I/O error problem occurs so many times that a haltfload is necessary 
before you can move the disk to an operable disk drive. However, you may be able to 

8600 0668-000 



Recovery 

avoid the halt/load by performing the following steps. This process is not recommended 
for A 12 and A 15 systems. 

1. Halt the processors. 

2. Manually move the disk. 

3. Start the processors when the disk is ready. 

This technique does not always work. If the system does not start running again, 
proceed with a halt/load. 

Moving Data to Another Disk 
Usually when a disk experiences problems, it is not totally unusable. If a particular disk 
in a family produces a large number of I/O problems, you can move the data to another 
disk by one of two techniques. 

Using the RES Command 

If the disk is a continuation pack of a multidisk family, you can reserve the disk with the 
RES (Reserve) system command with the following syntax: . 

RES PK <unit number> AS BADDISK 

The system copies all the data from the disk to other members in the family. After the 
reserve operation is completed, you can perform maintenance operations on the disk. 
For instance, you can use the PG (Purge) system command. If the system encounters 
parity errors during the RES operation, it terminates the operation and displays a 
message on the aDT that designates which addresses encountered the error. You must 
then decide whether to remove the affected files or use the COPYERRORS clause of the 
RES command. COPYERRORS causes the RES operation to copy all the data on the 
disk, including data that has parity errors. The data that has parity errorS is still invalid 
and cannot be used. 

For more information, refer to "Using the RES, XD, and SQUASH Commands" in 
Section 2. 

Using the REPLACE Command 

Use the REPLACE (Replace Disk or Pack Volume) system command instead of the RES 
command in the following situations: 

8600 0668-000 12-5 



Recovery 

• If the disk is a base pack or if it contains a large amount of data. In this case, the 
RES operation can be a lengthy process. Also, if the disk contains a large amount of 
data, it can be difficult for the RES operation to find sufficient space for the files on 
the other members of the family. 

• If you know that the disk contains portions of files that were assigned to the disk 
with the F AMILYINDEX file attribute. The RES operation does not permit files 
to be moved from a disk if the files were assigned to that family member with the 
F AMILYINDEX attribute. 

To use the REPLACE command, obtain an available disk of the same model (677, for 
example) or a different model disk that contains a larger number of sectors, and enter 
the following command syntax: 

REPLACE PK <source unit number> ONTO 
PK <destination unit number> 

The system then copies all the files and label information from the original disk to the 
new disk. The new disk receives the serial number and family name of the old disk. 
When the copying is complete, the system erases the label on the old disk so that it does 
not become confused with the new disk. 

Caution 

Do not use the REPLACE system command to make backup copies of disks 
because the command erases the label of the source disk. 

Directory Error Recovery 
Disk directories are very important. If something goes wrong with a directory, it is 
possible to lose some or all files referenced by that directory. The directories are 
designed so that errors in one part of the directory do not adversely affect other parts of 
the directory. The system constantly monitors the directories for discrepancies. When 
an error is detected, the system automatically attempts to eliminate the problem. The 
following system features help to ensure the integrity of the directories: 

Standard Disk I/O Error Recovery 

The standard I/O subsystem attempts to recover from all failed I/O operations, including 
directory I/O errors. Only I/O errors that are not corrected by these attempts can cause 
problems. 

Directory Record Integrity Tests 

12-6 

The MCP tests all directory records before they are used. Each record must pass tests 
such as HDRMARKER, HDRLOCATION, and CHECKSUM. If a record fails one of 

8600 0668-000 



Recovery 

these tests, the directory subsystem invokes one or more of the following procedures: 
error reporting, recovery, or termination. 

Automatic ERRORHANDLER Family Rebuilds 

These rebuilds are invoked to build a new file access structure table . (FAST). Family 
rebuilds solve two types of problems. First, certain types of bad records in the fiat 
directory or catalog are bypassed during the rebuild so that these records are not 
referenced by the rebuilt FAST and do not cause problems. Second, certain corrupted 
FAST records are discarded during the rebuild. Refer to "The Family Rebuild Process" 
later in this section for more information on this subject. 

Directory Duplication 

Duplicate directories on multidisk families can be used to solve most directory I/O errors 
and problems caused by directory data corruption. Duplicate directories also prevent . 
directory loss if a disk is physically destroyed. Duplicate directories require a modest 
amount of additional disk space and require more I/O operations because more than one 
copy of the directory must be updated. 

Disk directories are stored as disk files. As with any disk file, they can experience 
problems. The flat directory and the catalog can have three different, but interrelated, 
types of problems: directory I/O errors, directory data corruption, and MCP program 
errors. These errors, which are very infrequent, have the following characteristics. 

If a disk I/O error message immediately precedes or follows a directory error, then you 
can infer that the I/O error might be the root of the directory error. You can also make 
finer distinctions. If the I/O error occurred during a write operation, the message 
indicates that a file header that was just added, removed, or changed in the directory 
might not be usable the next time it is referenced. If the error occurred during a read 
operation, the message indicates that the system was attempting to access a directory 
record (such as a disk file header) and that directory record is unreadable. Repeated 
references to that same file presumably would cause repeated read errors. 

Some I/O errors can be easily corrected. For example, you "may be able to solve a NOT 
READY or WRITE LOCKOUT error by turning the proper switch to the proper setting. 
On the other hand, parity errors on read operations usually are not correctable. In fact, 
the system only reports a parity error if several attempts to perform the read operation 
fail. Correction of parity errors depends on the exact nature of the error. If the data 
truly has a parity error, then that directory record is lost. But if the parity error is 
caused by a faulty disk drive or a disk drive controller malfunction, fixing the hardware 
restores access to the directory record. 

It is difficult to distinguish directory data corruption from MCP errors. A typical 
directory data corruption error might cause a CHECKSUM, HDRMARKER, or 
HDRLOCATION error message. Note that all read errors also appear to the MCP 
directory subroutines as directory data corruption; read errors also cause error 
messages for CHECKSUM, HDRMARKER, HDRLOCATION, and so on. On the other 
hand, a typical MCP error results in a memory dump by FILEHANDLER. These are 

8600 0668-000 12-7 



Recovery 

12-8 

only tendencies, however. MCP errors can cause HDRLOCATION errors, and data 
corruption can cause FILEHANDLER memory dumps. 

When the system detects a directory error, it reports the problem with one or more 
messages. The system then often attempts some type of automatic error recovery. The 
system usually reports the progress or failure of the recovery with additional messages. 
These various messages are clues as to what happened. You should try to answer the 
following list of questions after a directory error occurs. The answers to these questions 
can help you decide what further corrective actions yop might need to take. 

• Did the system read the disk label and open the base pack directory, or did the 
system issue an error message to indicate that the disk cannot be used? If such 
an error message appears, there is a fundamental problem with the disk and not a 
problem with individual files on the disk. 

• Does the problem appear to affect only one or a few programs or files? Does it 
appear to affect every file on a family? Does it appear to affect every file on the 
system? These questions can help you isolate the problem. If only one or a few 
programs or files encounter errors, the problem usually is within these programs or 
files. If only one family encounters errors, the problem is within that family. 

• Does the problem appear to be in the flat directory on a given family, or 'does it 
appear to be in the catalog or access structure? Such problems are usually caused by 
I/O errors. If the word FLAT appears in the error message, then it indicates that 
the flat directory may have a problem. If the words P AST, FAST, CATALOG, VAST, 
or VOLLIB (Volume Library) appear, it almost always means there is a problem in 
the catalog or the access structure. 

• Does the problem appear to be an I/O error, or does it appear to be a case of data 
corruption or an MCP error? If it appears to be an I/O error, try to correct the 
problem as discussed above. If it appears to be a case of data corruption or an MCP 
error, contact your Unisys field engineer or file a User Communication Form (UCF) 
with Unisys. 

• Does the problem appear to be intermittent, or has the problem been there for a 
long time? Does the same kind of problem crop up occasionally for different files, or 
does the problem appear only for a particular test case? If you can isolate the test 
case, you can show it to your Unisys field engineer. 

• Does the problem go away after a family rebuild? If it does, then the rebuild 
probably took care of the problem. 

Be sure to locate the original error message, in SYSTEM/SUMLOG if necessary. Often 
one error triggers several error reports. The first error message can be the best clue. 
The LOGANALYZER utility often is helpful in solving I/O error problems because all I/O 
errors and an audit of any retry attempts are recorded in SYSTEM/SUMLOG. You can 
use LOGANAL YZER to examine the errors of a particular disk by entering the following 
syntax: 

LOG MAINT PK <unit number> 

The variable < unit number> is the unit number of the disk drive on which the disk is 
mounted. LOGANAL YZER then prints out a list of all I/O error retries and messages 
that have occurred for that disk drive since the log was initiated. These I/O error 

8600 0668-000 



Recovery 

messages can help you identify the problem, and you can then contact your Unisys field 
engineer if necessary. 

The Family Rebuild Process 
For each disk family, the system uses a special index structure called the file access 
structure table (FAST) to access disk files. When a family is first brought online, the 
system builds a FAST for it. Each time files are added, changed, or removed from the 
family, the system updates the FAST accordingly; sometimes the system rebuilds the 
FAST when disk errors occur. This discussion describes the family rebuild process, the 

. effects it can have on the FAST, and how you can respond to errors in the family rebuild 
process. 

There are three types of family rebuilds: rebuilds when a base pack. is first placed online, 
rebuilds invoked by the RB (Rebuild Access) ODT command, and rebuilds for error 
recovery. On cataloging systems, catalog rebuilds also occur during error recovery. 
Family and catalog rebuilds normally do not occur on a cataloging system when a 
volumed disk is placed online. 

Family Rebuilds for a New Base Pack or Halt/Load 

The first type of family rebuild occurs when a base pack is first placed online or at 
halt/load time. Regardless of whether or not a rebuild is needed, the system reads the 
entire flat directory on the disk to determine what sectors of the family are already 
allocated to files and what sectors of the family are available for new files. If a rebuild is 
necessary, then the FAST is rebuilt at the same time. 

Responding to Errors 

The MCP issues error messages if any errors are detected during this reading of the flat . 
directory or rebuild of the FAST. Immediately after the first such error message, the 
MCP displays the following message on the ODT: 

PKuu OK TO ERASE BAD RECORDS? (SYSTEMDIRECTORY/nnn ON packname) 

This message indicates that the MCP has just detected an error; there might be more 
errors as the rebuild progresses. The MCP is asking for permission to erase all flat 
directory records that caused errors. You can enter one of the following three replies . 

• DS 

If you enter the DS (Discontinue) system command, processing of the fiat directory 
halts and the system marks the disk as being offline . 

• OF 

The safest reply to the message is to use the OF (Optional File) system command. 
This reply causes the system to process the rest of the directory, but not to erase the 

. bad records. 

8600 0668-000 12-9 



Recovery 

The advantage of entering OF is that it gives the system a chance to process the rest 
of the directory without accidentally erasing it. For instance, if the cause of the 
original problem was that the disk was being read on a faulty disk drive, then erasing 
directory records could erase good records from the directory. 

When you enter OF, the system marks the disk as not having any available space for 
new files. This feature prevents a new file from accidentally being allocated in areas 
of the disk that overlap the areas in use by the files that apparently were bad. If you 
need to add records or files to the disk, you will have to'remove existing files to make 
room for the new records or files. 

After the system reports one bad record in the flat directory, the system often 
reports a few subsequent consecutive directory records as also being bad. Directory 
records are variable in length and several can be accessed together in one block, so 
additional bad records are often all part of the original bad record. If only a few 
extra bad records are reported, you usually can assume that there is actually just one 
bad record . 

• OK 

You can enter the OK (Resume) system command to erase corrupted directory 
records. This reply could lead to the loss of some files on the disk. Use this reply 
unless you suspect that the disk I/O hardware is defective and might be causing the 
problem. If you enter OK, the system proceeds with a family rebuild and then marks 
the disk. online. 

Terminating the Rebuild 

If the rebuild is being done while readying a disk or halt/loading, you can terminate the 
rebuild by entering CL PK < unit number>. The system stops the rebuild and marks 
the system as being offline. This can be a useful option if the disk becomes not ready 
during the rebuild or you decide the wrong disk was readied. 

Family Rebuilds Initiated by Your Installation 

This type of rebuild occurs when you use the RB (Rebuild Access) system command to 
build a new access structure. You can use the RB·command when you think that the 
access structure is corrupt or does not actually describe the files ~n a disk. 

This type of rebuild reconstructs the FAST and the AAST (for the archive directory of 
the family); it does not build an available disk table, does not ask the operator questions, 
and does not erase fiat directory records (good or bad). You cannot terminate this 
rebuild by issuing the CL (Clear) system command. 

Family Rebuilds for Directory Error Recovery 

12-10 

This type of rebuild occurs when the directory error recovery procedure 
ERRORHANDLER is invoked. ERRORHANDLER is invoked automatically when an 
error is detected while accessing the directory of an online family. 

8600 0668-000 



Recovery 

This rebuild only reconstructs the FAST; it does not build an available disk table, does 
not ask the operator questions, and does not erase flat directory records (good or bad). 
You cannot terminate this rebuild by issuing the CL (Clear) system command. 

Family Rebuild Errors 

When problems occur during a family rebuild process, the system reports them 
through error messages. Errors reported during one rebuild process can lead to other 
problems later. For example, files might be reported as missing when the disk is used, 
or there might be conflicting or duplicate file names when a subsequent rebuild process 
is executed on the same family. If the rebuild process reports readable records as 
unreadable because of software or hardware errors, those records might again be 
readable at some later time. The rebuild process does not erase file records that appear, 
even temporarily, to be unreadable, unless you respond to the "OK TO ERASE BAD 
RECORDS?" system message with an OK or a DS reply. 

When the family rebuild process has finished executing, it is possible for other programs 
to add files to the family directory. These files can have the same titles as the files in 
which unreadable records were found during the rebuild process. Because the system is 
not aware that the files have the same titles, the unreadable records are not removed. 
When another rebuild process is executed, these formerly unreadable records might be 
read successfully. During this subsequent rebuild, the system discovers the duplication 
of file titles and issues the "DUPLICATE FILE TITLE DURING REBUILD" error 
message. 

It is important to find and correct the root cause of any rebuild errors as soon as possible, 
perhaps by repairing the disk unit. When you have found and corrected the cause of the 
error" immediately issue the following system command: 

RB ON <family name> 

This command enables the system to build an accurate list of the names of the files that 
reside on the disk family, before too many duplicate file names appear. 

Working with Damaged or Incorrect Archive Directories 
The MCP maintains a separate archive directory on the catalog family for each online 
disk family at your installation. Each archive directory consists mainly of records that 
identify the names and locations of files that have been copied to backup tapes through 
archive subsystem operations. Because the archive directory retains records of up to 
four backup operations for each file copied to tape, you might find references to old tapes 
and earlier generations of files in this directory. 

Like any directory or file, the archive directory can be damaged. For example, records 
in an online archive directory can be corrupted by hardware or system software errors. 
Moreover, an archive directory might be unavailable to you. This sometimes occurs 
during halt/load procedures or when the RY (Ready) system command is run to ready a 
disk. 

8600 0668-000 12-11 



Recovery 

If you find that an archive directory is damaged, or that some of its records have been 
corrupted or inad~ertently removed, you can follow one of the methods described below. 

Note: The effectiveness of these methods relies on regularly performed 
backup procedures. If your backup directories do not contain current 
data, these procedures might replace your damaged or missing 
directory with an out-ot-date version. 

Restoring Archive Directories 

If you find that a significant portion of an archive directory is damaged or missing, you 
can use a backup copy of the directory as a replacement for the damaged or missing one. 
To restore an. archive directory to disk, perform the following procedure: 

1. Use the WFL COPY statement to copy the backup version of the archive directory 
to the catalog family. . Be sure to include the F AMIL YINDEX clause in the COPY 
command syntax; this clause ensures that the entire directory is placed on a single 
pack of the catalog family. The following example shows a COpy statement, in 
which the DL catalog family is named CPACK: 

COpy & COMPARE ARCBACKUP/DATABANK/001 FROM 
ARCBACKUP TO.CPACK (FAMILYINDEX=l) 

2. When the system has finished executing the COPY statement, you can use the 
ODT system command ARCREPLACE (Archive Replace). This command changes 
the name of the defective directory and activates the backup copy in its place. An 
example of the ARCREPLACE command follows: 

ARCREPLACE DATABANK ARCBACKUP/DATABANK/001 ON CPACK 

These steps change the name of the active archive directory for the family DATABANK 
to OLD/SYSTEM/ARCHIVE/DATABANK, and the name of the replacement directory 
fromARCBACKUP/DATABANK/OOl to SYSTEM/ARCHIVE/DATABANK/OOl. The 
file named SYSTEM/ARCHIVE/DATABANK/OOI is then opened for use as the archive 
directory for the disk family. 

Restoring Damaged Archive Directory Records 

12-12 

If you find that a few archive records are damaged or missing'but the directory itself is 
largely intact, you can restore those records with the aid of a DCALGOL utility program. 
You can code a program that uses GETSTATUS and SETSTATUS calls to delete 
damaged or incorrect records and replace missing records. 

The following DCALGOL program provides an example of how such code might 
look. This program. restores all archived records that have been copied through a 
GETSTATUS call (TYPE 3 and SUBTYPE 12), and saved in the following file name: 

ARCSAVE/PACK ON DISK 

This program example restores archive records that have been copied and saved as 
described above, for the files associated with the usercode UCDEPT. You might use a 

8600 0668-000 



Recovery 

program like this one if, for example, someone in your installation inadvertently purges 
all archive records associated with a particular usercode, and you had preserved a copy of 
the records as described above. 

BEGIN 
ARRAY ARY [0:3000]; 

BOOLEAN RSLT; 
% SETSTATUS PARAMETER ARRAY 
% SETSTATUS RESULT 

% INPUT DISK FILE-- PRODUCED BY A CALL ON 
% GETSTATUS (3 & 12 [15:8], •••• ); 

FILE D (KIND=DISK, NEWFILE=FALSE, TITLE= "ARCSAVE/PACK." , 
FILETYPE=1, INTMODE=SINGLE, DEPENDENTSPECS=TRUE); 

ARRAY BUF [0:2049]; % INPUT RECORD 
DEFINE % ABBREVIATED LAYOUT OF ARCHIVE RECORDS 

% EVERY LINK WORD IS LAYED OUT AS FOLLOWS 
ARLINKEDF = [47:1J #, % 1 MEANS WORD HAS ARSIZEF & ARLINKF 
ARSIZEF = [23:12J #, % LENGTH OF EACH ENTRY (WORDS) 
ARLINKF = [11:12J #, % INDEX OF STUFF IN VARIABLE PART 

ARTITLEX = 6 #; % LINK TO FILE NAME 
POINTER PSFN; % POINTER TO FILENAME IN "BUF" 

% LOOP READING RECORDS FROM BACKUP OF ARCHIVE DIRECTORY 
WHILE NOT READ (D, 2049, BUF) DO 

END. 

BEGIN 
% NOTE, INDEXES INTO "BUF" ARE INCREMENTED BY 1 BECAUSE FIRST 
% WORD OF RECORD READ FROM "D" FILE IS FILETYPE 1 LENGTH INFO. 

PSFN := POINTER (BUF [1+ BUF [1+ARTITLEX].ARLINKFJ); 
IF REAL (PSFN+1, 1).[1:2J = 3 THEN % HAS USERCODE 

IF PSFN+3 = 48"06" "UCDEPT" THEN % USERCODE=UCDEPT 
BEGIN 

ARY [0] := 6; 
ARY [lJ. [38:6] := 3; 
REPLACE POINTER (ARY [2J) BY 48"04" "PACK"; % FAMILY NAME 
REPLACE POINTER (ARY [6J) BY 

POINTER (BUF [lJ) FOR BUF [0J WORDS; 
RSLT := SETSTATUS (3, 2, 0, ARY); 
IF RSLT THEN 

DISPLAY ("SETSTATUS ERROR RESTORING ARCHIVE RECORD"); 
END; 

END OF READING FILE LOOP; 

To find detailed discussions of the available kinds of GETSTATUS and SETSTATUS 
calls, refer to the A Series GETSTATUS/SETSTATUS Programming Reference 
Manual. 

8600 0668-000 12-13 



12-14 8600 0668-000 



Appendix A 
Layout of Archive Directory Records 

This appendix presents the layout and content of the data records in the archive 
directory. This information is presented here to help you use the GETSTATUS and 
SETSTATUS intrinsics more effectively, and to show you the form in which information 
is passed to the selector procedure when you issue WFL ARCHIVE statements. 

Archive records are used by the following system interfaces: 

• When you retrieve archive records with certain GETSTATUS directory calls. 

• When you add a record to an archive directory, using existing archive directory 
records, with a SETSTATUS call. 

• When you display archive records by using the FILEDATA system utility with an 
ARCHIVElNFO request that uses the RA WHEADERS SYSTEM/FILEDATA task 
request. 

• When the archive subsystem passes archive records as parameters to the selector 
procedure of the archive support library. This process occurs when you issue a WFL 
archive statement. 

Layout of the Archive Data Records 
The layout shown in this section presents the overa11 layout of the data records in the 
archive directories. In the provided example, comments are included to clarify the 
meaning of particular items in the archive records. All comments are preceded by a 
percent sign (%). 

Note: The SYMBOL/ARCHNESUPPORT file contains the DEFINE 
definitions that are shown in this layout. If you need to, you can copy 
them from that file. 

The definitions under DEFINE describe the words, fields, and values used in this . 
structure. In general, the archive records share the following characteristics: 

• The length of each record is variable. This characteristic enables each record to 
contain variable length items efficiently. For example, file titles can be from 5 to 255 
characters long, while tape serial number lists can be from 1 to 256 words long. In 
either case, format changes to the record are not required. 

• Each record ~ refer to as many as four backup tape sets for the same file. 

• The records are designed to enable future additions of defined words without causing 
previous Mark release systems to fail. 

8600 0668-000 A-I 



Layout of Archive Directory Records 

A-2 

% ALL WORDS DEFINED IN THIS STRUCTURE BEGIN WITH "AR" AND END WITH 
% "X"; ALL FIELDS HEREIN BEGIN WITH "AR" AND END WITH "F"; AND 
% ALL VALUES HEREIN BEGIN WITH "AR' AND END WITH "V". 

DEFINE 
AIWX = 0 #, 

ARTYPEX = 1 #, 
ARIDF = [47:24] #, 

ARIDV = 'ARC ' #, 

ARLEVELF = [23:8] #, 

ARLEVELV = 39 #, 
ARVARF = [11:12] #, 

ARTIMESTAMPX = 2 #, 

ARSRX = 3 #, 
ARSRF = [11:12] #,'-

% MARK,'HDRLOCATIONF, HDRBLOCKLENGTHF 
% HDRBLOCKLENGTHF & HDRLOCATIONF 
% DETERMINES STRUCTURE OF RECORD 
% DISTINGUISH ARCHIVE DATA BLOCK 
% FROM ARCHIVE II FAST II BLOCK 
% "BLOCKNOLENGTH" NEVER EQUALS THIS 
% (0 FOR DISK AND SCRATCH TAPES) 
% MCP RELEASE LEVEL FOR THIS ARCHIVE 
% DIRECTORY DATA BLOCK STRUCTURE 

% INDEX TO START OF VARIABLE LENGTH 
% 
% 
% 

STUFF; RECORDS PRODUCED BY 
DIFFERENT MCP LEVELS MAY VARY 
THIS. 

% DATE & TIME WHEN THIS RECORD WAS 
% LAST CHANGED OR UPDATED. 

% INDEX TO LINKED LIST OF SUBRECORDS; 
% THERE IS ONE SUBRECORD PER 
% GENERATION TRACKED. (IN THE 3.9 
% RELEASE ONLY ONE GENERATION IS 
% TRACKED. 

% SEE BELOW FOR LAYOUT OF THE SUBRECORDS 
ARCHA1X = 4 #, % R F E 
ARCHA2X = 5 #, % R F E 

% END OF ORIGINAL 3.9 FIXED STUFF. NEXT THERE ARE THE SPECIAL WORDS. 
% THERE ARE TWO KINDS OF SPECIAL WORDS: THOSE WITH ARLINKEDF ON, AND 
% THOSE WITH ARLINKEDF OFF. WORDS WITH ARLINKEDF ON ARE LINKS TO 
% STUFF IN THE "VARIABLE LENGTH AREA" THAT STARTS AT WORD NUMBER 
% "XXX [ARTYPEX] .ARVARF" • WORDS WITH ARLINKEDF ON ARE LAYED OUT 
% THUS: 0 & firstwordno ARLINKF & wordcount ARSIZEF & 1 ARLINKEDF. 
% WORDS WITH ARLINKEDF OFF ARE NEW BUCKETS THAT CAN BE INVENTED ON 
% POST 3.9 MCPS TO HOLD NEW BITS (EACH NEW WORD WOULD HAVE 46 NEW 
% BITS AVAILABLE FOR DEFINITION). FOR EXAMPLE, IF ON THE 4.1 RELEASE 
% YOU WANTED TO INVENT SOME NEW 10 BYTE ITEM YOU COULD ALLOCATE 
% TWO WORDS FOR IT (INCREASE ARVARST DEFINE TO BY 2), AND STORE THE 
% TEN BYTES IN THOSE TWO WORDS (BEING CAREFUL TO LEAVE BIT 47 -- THE 
% ARLINKEDF BIT = 0 IN BOTH WORDS). 

% WE NEED THE ARLINKEDF BIT SO THAT AN OLD MCP CAN SLIDE STUFF AROUND 
% IN THE "ARVARSTX II AREA OF ANY RECORD AND BE ABLE TO ADJUST ALL 
% ARLINKF INDEXES CORRECTLY. THE OLD MCP DOESN'T NEED TO KNOW WHAT'S 
% POINTED TO BY NEW ARLINKEDF/ARLINKF/ARSIZE WORDS; IT ONLY NEEDS TO 
% KNOW THAT ANY WORD WITH THE ARLINKEDFBIT ON MAY NEED ADJUSTMENTS 
% TO ITS ARLINKF VALUE. 

8600 0668-000 



Layout of Archive Directory Records 

% EVERY LINK WORD IS LAYED OUT AS FOLLOWS: 
ARLINKEDF = [47:1] #, % 1 MEANS WORD HAS ARSIZEF & ARLINKF FOR 
ARSIZEF = [23:12] #, % LENGTH OF EACH ENTRY (WORDS) 
ARLINKF = [11:12] #, % INDEX OF STUFF IN VARIABLE PART 

ARTITLEX = 6 #, % LINK TO FILE NAME 

% ON FUTURE RELEASES NEW ITEMS & LINKS CAN BE DEFINED HERE. NOTICE 
% THAT IN THE INITIAL 3.9 RELEASE THE MCP DOES NOT HAVE TO TEST FOR 
% THE PRESENCE OF NEW WORDS. FOR EXAMPLE, WE KNOW THAT ALL RECORDS 
% HAVE AN ARTITLEX SLOT BECAUSE THE INITIAL 3.9 RELEASE HAD THAT 
% DEFINE. BUT FOR ALL POST 3.9 INTRODUCED WORDS THE MCP MUST BE 
% CAREFUL TO TEST THAT THE RECORD IN HAND HAS THE NEW WORD BEFORE 
% IT CAN BE ACCESSED: IF XXX [ARTYPEX].ARVARSTF GTR ARnewwordX THEN 
% RECORD HAS THE WORD ••• 

ARVARSTX39 = 7 #, 

ARVARSTX = 7 #, 

% ALL LEVELS OF ARCIOV RECORDS HAVE AT LEAST 
% THIS MUCH. 

% START OF VARIABLE LENGTH STUFF POINTED TO BY LINK WORDS. THE 
% DATA IN THIS AREA MUST APPEAR IN THE SAME ORDER AS THE LINK 
% WORDS THAT POINT TO IT AND THE DATA ITEMS MUST BE CONTIGUOUS 
% (NO INTERVENING HOLES). THESE RULES MAKE VALIDITY CHECKING BY 
% "VALIDITY OF ARHANDLER" AND SIZE CHANGES BY "STRETCH OF ARHANDLER" 
% EASIER. IMMEDIATELY AFTER THE VARIABLE LENGTH STUFF FOR THE MAIN 
% "AR ••• " RECORD THERE APPEAR THE "ARG ••• II SUBRECORDS. THERE IS 
% ALWAYS AT LEAST ON "ARG ••• II SUBRECORD: 

% LAYOUT OF "ARG ••• II SUBRECORDS LINKED FROM IIX [ARSRX] .ARSRF" AND 
% "X [ARGX].ARGNEXTF". ONE SUBRECORD PER GENERATION: 

ARGX = 0 #, 
ARGNEXTF 
ARGVARF 

ARG1X = 1 #, 

= [23: 12] #, 
= [11:12] #, 

% INDEX OF NEXT SUBRECORD OR 0 
% INDEX TO START OF VARIABLE LENGTH STUFF 

ARGFKNDF = [47:12] #, % FILEKIND 
ARGSECTYPEF = [35:8] #, % SECURITYTYPE 
ARGSECUSEF = [27:8] #, % SECURITYUSE 

ARG2X = 2 #, 
ARGORGF = [47:8] #, % FILE ORGANIZATION (E.G. KEYEDIO) 
ARGSAVEFACTORF = [19:20] #, % SAVEFACTOR 

ARGTIMESTAMPX = 3 #, % TIMESTAMP OR FILE 
ARGGENX = 4 #, 

% % GENEALOGYF 
% % CYCLE 
% % GENVERSN 

ARGSIZEX = 5 #, 
ARGCREATEX = 6 #, 
ARGACCESSX = 7 #, 

8600 0668-000 

= [37 :22] # 
=[37: 14] # 
=[23:8]# 

% (CYCLE + VERSION). 
% CYCLE ATTRIBUTE. 
% VERSION ATTRIBUTE. 
% SIZE OF FILE IN MEGA-BYTES 
% CREATION DATE AND TIME 
% ACCESS DATE AND TIME 

A-3 



Layout of Archive Directory Records 

ARGCHAX = 8 #, 
ARGBKSX = 9 #, 

ARGREELF = [47:8] #, 

% R F E 
% FOUR BACKUP INFO WORDS; AT LEAST 
% ONE BACKUP MUST EXIST OR SUBRECORD 
% (& RECORD) SHOULD BE REMOVED FROM 
% SYSTEM/ARCHIVE/ ••• DIRECTORY. 

% STARTING REEL NO. OF BACKUP 

ARGTYPE = [37:6] #, % TYPE OF BACKUP 
ARGEMPTYV = 0 #, % BACKUP ENTRY NOT USED (OR DELETED) 
ARGFULLV = 1 #, % ARCHIVE FULL ••• 
ARGDIFFV = Z #, % ARCHIVE DIFFERENTIAL ••• 
ARGINCRV = 3 #, % ARCHIVE INCREMENTAL ••• 
ARGROLLV = 4 #, % ARCHIVE ROLLOUT ••• 
ARGMERGEV = 32 #, % ARCHIVE MERGE ••• 

% FOLLOWING ARE ACTION CODES TO "ARCHIVELISP' PROCEDURE, BUT 
% THEY ARE NEVER STORED IN RECORDS: 

ARCRESTOREV = 33 #, % ARCHIVE RESTORE ••• 
ARCRESTOREADDV = 34 #, % ARCHIVE RESTOREADD ••• 
ARCAUTORESTOREV = 35 #, % AUTORESTORE 

ARGBADF = [31:1] I, % ON IF WE FIND OUT TAPE IS OVERWRITTEN 
ARGNAMESX = 13 I, % FOUR SETS OF 18-CHARACTER TAPE NAMES 
ARGBOTTSX = 25 I, % FOUR DATES AND TIMES OF BACKUP 

ARGSNSX = 29 I, 
ARGLOCX = 33 I, 
ARGVARSTX39 =37 I, 

% BOT. AN "ARGOTTSX" VALUE CAN BE 
% USED TO IDENTIFY FILES BACKED UP IN 
% TH,E SAME RUN. ALSO PROPAGATED TO THE 
% VOLUME DIRECTORY "VSBOTTSX" WORD 
% FOUR LINKS TO SERIALNO LISTS 
% FOUR WORDS RESERVED FOR FUTURE EXPANSION 

% MINIMUM SUB'RECORD FIXED INFORMATION 

% END OF ORIGINAL 3.0 FIXED STUFF. ALL (NEW) WORDS FROM HERE TO 
% II bUf [ARGX] .ARGVARX - I" MUST BE IN II LINK WORD FORMAT". ' THAT 
% IS "ARLINKEDF" IS ON FOR LINKS TO NEW VARIABLE LENGTH STUFF; AND 
% "ARLINKEDF" IS OFF FOR SIMPLE NEW WORDS. 

ARGVARSTX = 37 I; % START OF VARIABLE STUFF POINTED TO 
% BY "ARLINKF" WORDS IN SUBRECORD 

% AFTER "ARG ••• " VARIABLES FOR THIS SUBRECORD, NEXT SUBRECORD (IF 
% TH'ERE ARE MORE) APPEARS. AFTER LAST SUBRECORD AND ITS VARIABLE 
% LENGTH STUFF AN EXTRA WORD IS USED FOR THE CHECKSUM OF THE WHOLE 
% liAR ••• " & "ARG ••• " COMBINATION RECORD. 

% MAXRECSIZE = AR FIXED + FILENAME + ARG FIXED + TWO 256 WD SN LISTS 
% + CHECKSUM WORD 

About Word Allocation in Archive Records 

A-4 

Each archive record includes at least one reference to a library maintenance tape set. In 
the ARG portion of the archive records, words are allocated in sets of four. Each word 
corresponds to a backup tape set. When there is only one backup tape set, information 
referring to it can appear in anyone of the four words. The only places in the ARG 

8600 0668-000 



Layout of Archive Directory Records 

records in which words are not allocated in sets of four occur in the ARGNAMESX slots 
for tape names; here, tape names are allocated as four sets of three words. 

You can detect the presence or absence of a backup reference only by checking the 
ARGTYPEF field of the [ARGBKSX] through [ARGBKSX + 3] words in the ARG 
portion of the array. For example, suppose an array named ARCREC contains an archive 
record. Backup 0 is valid if 

ARCREC [ARCREC [ARSRX].ARSRF + ARGBKSX + 0].ARGTYPEF NEQ AGREMPTYV 

Backup 1 is valid if 

ARCREC [ARCREC [ARSRX].ARSRF + ARGBKSX + l].ARGTYPEF NEQ ARGEMPTYV 

Backup 2 is valid if 

ARCREC [ARCREC [ARSRX].ARSRF + ARGBKSX + 2].ARGTYPEF NEQ ARGEMPTYV 

Backup 3 is valid if 

ARCREC [ARCREC [ARSRX].ARSRF + ARGBKSX + 3].ARGTYPEF NEQ ARGEMPTYV 

The disk :file name takes the standard form. It begins in the word 

ARCREC [ARCREC [ARTITLEX].ARLINKF] 

The backup tape names take a substandard form. That is, each name tape consists of 
one byte-length character, followed by a name that is from 1 to 17 characters long. Tape 
names occupy the following words: 

ARCREC [ARCREC [ARSRX] .ARSRF + ARGNAMESX +0] 
II II II 1 
II II II 2 

ARCREC [ARCREC [ARSRX].ARSRF + ARGNAMESX + 3] 
II II II 4 

II II II 5 

ARCREC [ARCREC [ARSRX].ARSRF + ARGNAMESX + 6] 
II II II 7 
II II II II 8 

ARCREC [ARCREC [ARSRX].ARSRF + ARGNAMESX + 9] 
II II II II II 10 

II II II II 11 

The words that contain dates and times, such asARTIMESTAMP}{, ARGCREATEX, 
ARGACCESS}{, andARGBOTTSX, return the date and time in the same format that 
the ALGOL intrinsic "TIME (6)" does. 

8600 0668--000 A-5 



A-6 8600 0668-000 



Glossary 

This glossary defines terms as they are used in this guide. These terms may have a broader 
definition outside the scope of this guide. 

A 
AAST 

See archive access .structure table. 

access structure 

address 

The central disk file that the system uses to determine the location of files stored on the 
disk subsystem. On noncataloging systems, the acc~ss structure contains entries that 
are used to locate files that are accessible to the system. On cataloging systems, the 
access structure contains entries that are used to locate all available versions of a file. 
The access structure is also called the catalog on both cataloging and noncataloging 
systems. 

The identification of the location of a disk sector. 

alternate haltlload family 
A family that contains a backup copy of the Master Control Program (MCP) object 
code file and is not the current halt/load family. If the current halt/load family fails, the 
alternate halt/load family can be used to operate the system. 

alternate haltlload unit 
A disk that contains a duplicated Master Control Program (MCP) object code file and is a 
member of the current halt/load family. 

archive access structure table (AAST) 
Special records in an archive directory that the system uses to access archive data 
records by file name. 

archive backup information 
Information that is generated and used by Work Flow Language (WFL) ARCHIVE 
statements. Archive backup information describes to what tapes backup copies of disk 
files were copied and contains the file attributes of those backup files at the time they 
were saved. 

archive directory 
A directory file that the system uses to store archive backup information for disk files. 
Archive backup information is generated and used by Work Flow Language (WFL) 
ARCHIVE statements. The system stores archive directories on the catalog family. 
Each disk family on the system has one archive directory, although duplicates can be 
created. 

8600 0668-000 Glossary-l 



Glossary 

ARCHIVING 

area 

The system option that, when enabled with the OP· (Options) system command, enables 
the system to store and retrieve information about old generations of cataloged files in a 
database. 

The amount of contiguous disk space that is allocated at one time to a disk file as it is 
being created or expanded. Synonym for row. 

AREASIZE 
A file attribute that refers to the number of records allocated to a particular area of disk. 

automatic display mode 

B 

A display mode that can be initiated at an operator display terminal (ODT) through the 
use of the ADM (Automatic Display Mode) system command. In this mode, various 
types of information about the system are displayed at regular intervals. 

backup file 
(1) A copy of a file on a cataloging system that has been saved with the COpy & 
BACKUP Work Flow Language (WFL) statement. (2) A copy of a file that is stored 
offline so that it can be copied back onto the system if the original file becomes corrupted 
or inaccessible. 

BADDISK file 
A disk file with a FILEKIND of BADDISK. This kind of file is used by the system 
to cover areas of disks that might be defective. An area of disk that is covered by a 
BADDISK file is not available for allocation to any other disk files. BADDISK files 
are created by the system command XD (Bad Disk) and certain forms of the system 
command RES (Reserve). BADDISK files are sometimes a side effect of the Initialize, 
Verify, and Reconfigure (IVR) procedure and the system command RC (Reconfigure). 
Also, certain system programs, such as Library Maintenance, automatically create a 
BADDISK file when an I/O error occurs. 

base pack 

block 

A disk that contains a copy of the system directory for the family of that disk and is 
currently being used by the system to identify and access the family. -

A group of physically adjacent records that can be transferred to or from a physical 
device as a group. 

BOOTCODE file 

Glossary-2 

A file that contains the maintenance subsystem software, microcode, UTILOADER code, 
and diagnostic tests, and, on some A Series systems, the BOOTSTRAP program. 

8600 0668-000 



c 
CANDE 

catalog 

Glossary 

See Command and Edit. 

The central disk file that stores the information about the disks in the system and 
the disk files. This file is named SYSTEM/CATALOG/ < family index number> on 
Cataloging systems and SYSTEM/ACCESS/ < family index number> on noncataloging 
systems. 

catalog family 
The disk family designated by the DL (Disk Location) system command as being the one 
on which SYSTEM/CATALOG or SYSTEM/ACCESS file is stored. 

catalog level 
An integer value that determines how many generations of each file an installation can 
have. The catalog level is established by assigning a value to the CATALOGLEVELSET 
define that is compiled into the Master Control Program (MCP). CATALOGLEVELSET 
can be assigned a value in the range 1 through 7. The default value is 3. 

catalog rebuild 
The process on a cataloging system in which the system updates the file access structure 
table (FAST) with information about backup copies of cataloged files. 

cataloged file 
A file that has been entered into the catalog. The user can enter a file into the catalog 
by using the CATALOG ADD or COPY & CATALOG Work Flow Language (WFL) 
statement, by assigning to the USECATALOG file attribute the value TRUE, or by 
enabling the system option USECATDEFAULT. 

CATALOGING 
A system option that, when enabled with the OP (Options) system command, allows the 
system to keep track of copies of files that have been backed up onto tape or disk. 

checkerboarding 
A situation in which only small areaS are available between the in-use areas of storage. 
Many areas can be available, but the system might not be able to use them because none 
of the areas is large enough. 

checksum 

code file 

A directory test that performs a data integrity check of a directory record to ensure that 
it has not been corrupted. 

See object code file and source file. 

Command and Edit (CANDE) 
A time-sharing message control system (MCS) that allows a user to create and edit files, 
and to develop, test, and execute programs, interactively. 

8600 0668-000 Glossary-3 



Glossary 

complementing 
The process the system uses to construct an available disk table. The Master Control 
Program (MCP) starts with the entire available disk and then reads the disk file headers 
on a family to determine the space that is already allocated. The MCP then takes the 
complement of the allocated space to determine the space that is still available. 

continuation pack 
A disk that is not cw-rently being used as the base pack for a multipack family. A 
continuation pack can have a copy of the system directory for the family. 

COpy substatement 

CYCLE 

cylinder 

D 

The part of the Work Flow Language (WFL) COpy or ADD statement that includes 
a HOSTNAME specification. Each source and destination host is treated as a 
separate substatement and is processed separately. In the command COPY F TO Tl, 
T2(HOSTNAME = X), substatement 1 is COPY F TO Tl, and substatement 2 is COPY 
F TO T2(HOSTNAME = X). 

A file attribute that can be used with the VERSION file attribute to distinguish the 
generations of a file. 

All the tracks on all the platters of a disk that have the same radius. 

data link processor (DLP) 
A processor that serves as the system interface to a specific peripheral device, controller, 
or communications network. 

Data Management System II (DMSII) 
A specialized system software package used to describe a database and maintain the 
relationships among the data elements in the database. . 

destination host 

directory 

disk 

, Glossary-4 

In a file copy process, the host system to which files are being copied. 

(1) Special disk files used by the system that include archive directories, catalogs, 
and system directories. (2) The partial name of a disk file up to one of the following 
terminators: a slash followed by an equal sign (j = ) or a right parenthesis followed by an 
equal sign 0 = ). 

(1) A random-access data storage device consisting of one or more circular platters that 
contain bits of information recorded in concentric circular paths called tracks. Data on a 
disk are accessed by movable read/write heads. Some disks are removable. (2) Synonym 
for disk pack, pack. 

8600 0668-000 



Glossary 

disk drive 
The device on which a disk is mounted. The disk drive has movable read/write heads 
that access the data on the disk. 

disk drive controller 

disk file 

The device that controls the disk drive units and transfers information between the host 
system and the disk drive units. On some systems, this device is also referred to as a 
D-Machine. 

A file stored on a disk or disk pack. 

disk file header 
A data structure that contains information about a disk file, such as the physical location 
of the file on the disk and various file attributes. A disk file header is also referred to as . 
a header. 

disk pack 
(1) A random-access data storage device consisting of one or more circular platters that 
contain information recorded in concentric circular paths called tracks. Data on a disk 
pack are accessed by movable read/write heads. Some disk packs are removable. (2) 
Synonym for disk, pack. 

disk resource control (DRC) system 

DLP 

DMsn 

DRC 

E 
EMS 

Ari optional feature of the disk subsystem that provides the ability to control disk 
space on a per user basis. The DRC system does not support interchange aC) packs 
or installation-allocated disk (IAD) usage. DRC is not a security system, but normal 
security checking occurs. 

See data link processor. 

See Data Management System II. 

See disk resource control system. 

See Entry and Medium Systems. 

end of file (EOF) 
A code at the end of a data file that signals that the last record in the file has been 
processed. 

end of volume (EOV) 
A code at the end of a tape volume that signals that the last record in the volume has 
been processed, but that the file is continued on another tape. 

8600 0668--000 Glossary-5 



Glossary 

Entry and Medium Systems (EMS) 

EOF 

EOV 

F 
family 

A designation referring to the Micro A and A 1 through A 10 systems. 

See end of file. 

See end of volume. 

(1) One or more disks logically grouped and treated as a single entity by the system. 
Each family has a name, and all disks in the family must have been entered into the 
family with the RC (Reconfigure Disk) system command. (2) The name of the disk or 
disk pack on which a physical file is located. 

family index 
A 3-digit number the system assigns to a disk when the disk is added to a family. This 
family index value must be in the range 1 to 255, inclusive. The base pack is assigned 
the family index number, the first continuation pack is assigned 002, and so on. A family 
index is also referred to as a family index number. 

family index number 
See family index. 

family member 
A disk that is a base or continuation pack in a family. 

family name 
The name, consisting of up to 17 alphanumeric characters, assigned by an installation to 
identify a family of disks. 

family rebuild 
The process in which the system reconstructs the file access structure table (FAST) 
entry for a family by reading its system directory. 

family substitution 

FAST 

A method for redirecting references to files on a disk family to avoid entering the 
actual family name in commands or file names. For example, if the user enters 
FAMILY = PACK OTHERWISE DISK, that user's file requests are checked on disk 
packs named PACK and DISK 

See file access structure table. 

file access structure table (FAST) 

Glossary-6 

Special records in the access structure or catalog directory that the system uses to locate 
disk files. The FAST contains a pointer to the header of each disk file in the system 
directory of each family. 

8600 0668-000 



Glossary 

file attribute 

filename 

file title 

An element that describes a characteristic of a file and provides information the system 
needs to handle the file. Examples of file attributes are the file title, record size, number 
of areas, and date of creation. For disk files, permanent file attribute values are stored in 
the disk file header. 

A unique identifier for a file, consisting of name constants separated by slashes. Each 
name constant consists of letters, digits, and selected special characters. A file name can 
be optionally preceded by an asterisk (*) or usercode, and optionally followed by ON and 
a family name. 

The complete identifier for a file that consists of the file name, and the word ON, and the 
family name. 

flat directory 
See system directory. 

G 
genealogy 

The ranking of a generation of a file relative to the other generations of that file. The 
generation with the highest CYCLE file attribute, the highest VERSION file attribute 
within that CYCLE, and the most recent timestamp within that CYCLE and VERSION 
is said to have the best genealogy. 

generation 
A particular, available copy of a file. The generation of a file is determined by the file 
attributes CYCLE and VERSION, and the timestamp of the file. 

GENERATION 
A file attribute on cataloging systems that allows the user to select a particular 
generation of a file. 

guard file 

H 
halt/load 

A disk file created by the GUARDFILE utility program that describes the access rights 
of various users and programs to a program, data file, or database. 

A system-initialization procedure that temporarily halts the system and loads the 
operating system from a disk to main memory. 

halt/load family 
The disk family that contains the currently operative Master Control Program (MCP) 
object code file. 

8600 0668-000 Glossary-7 



Glossary 

halt!Ioad pack 
A pack that contains a Master Control Program (MCP) object code file designated as 
the currently operative MCP. This pack is mounted on a drive that has been or will be 
designated as the hait/load unit. 

halt!Ioad unit 
The drive on which the halt/load pack is mounted. 

HDRLOCATION 
A directory record test that ensures that the directory record has the correct record 
number. 

HDRMARKER 

HDU 

header 

A directory record test that ensures that the directory record is the correct type. 

See host data unit. 

A data structure that contains information about a disk file, such as the physical location 
of the file on the diSk and various file attributes. A header is also referred to as a disk 
file header. 

host data unit (HDU) 

I 
I/O 

The A 12 and A 15 system host interface to the I/O subsystem. An HDU is .eonfigured 
with up to three host-dependent ports (HDPs), each of which supports two message level 
interface (MLI) cables. 

Input/output. An operation in which the system reads data from or writes data to a file 
on a peripheral device such as a disk drive. 

I/O controller 
The processor that provides the interface between the host system and a peripheral 
device such as a disk drive controller. 

I/O processor (lOP) 
A specialized processor for moving data between system memory and the I/O subsystem. 

I/O subsystem 
The hardware and software that manage all transfers of information between the Master 
Control Program (MCP) and peripheral devices. . 

InfoGuard 

Glossary-8 

The Unisys security-enhancement software for A Series systems. InfoGuard provides 
such features as password management, selective logging and auditing, tape volume 
security, and simplified system-security configuration. 

8600 0668-000 



Glossary 

initialize, verify, and relocate (IVR) 
A maintenance procedure used to write sector bounda:ries and a blank label on a disk. 
The IVR procedure can be used to make a new disk pack usable by the system or a 
damaged disk reusable by eliminating defective sectors. The end product of an IVR is a 
master available table (MAT) of available disk sectors. 

interchange disk pack 

lOP 

IVR 

L 
label 

A disk pack. with a directory format that allows files to be transferred from a Unisys 
A Series system to certain other Unisys systems. 

See I/O processor. 

See initialize, verify, and relocate. 

The first 28 sectors on a disk, on which information about the disk is stored. This 
information includes the family name and serial number, the master available table 
(MAT), the family index number, information about the family base pack, and a pointer 
to the system directory if the disk contains a directory. 

label error 

LAST 

An error that indicates that a label or system dir~tory of a disk was not processed 
correctly when the disk was prepared for system use with the RY (Ready) system 
co~d. . 

See local access structure table. 

library maintenance 
A procedure that copies disk files from a disk to a disk, from a disk to a tape, from a tape 
to a disk, and from a tape to a tape. The procedure is invoked by Work Flow Language 
(WFL) ADD or COpy statements. 

library maintenance tape 
A tape created by library maintenance that contains backup copies of disk files. 

local access structure table (LAST) 
A special file located on the base pack that is used to update the file access structure 
table (FAST) each time a base pack is brought online. The main value of the LAST 
is that a time-consuming family rebuild is not necessary when a disk is readied on a 
noncataloging system. 

logical record 
The amount of data accessed in the execution of one read or write statement in a 
program. 

8600 0668-000 Glossary-9 



Glossary 

look-ahead buffer 

M 

An area where the system stores records of input files that it expects to access soon, 
such as the next record of a file that is being read sequentially. 

master available table (MAT) 
A table stored on each disk that lists the valid sectors on the disk that were successfully 
processed by the initialize, verify, and relocate (IVR) procedure. Pointers to defective 
sectors are deleted from the MAT so that these sectors will not be accessed. Normally, 
the MAT shows the entire disk as being available, minus any defective sectors. 

Master Control Program (MCP) 

MAT 

MCP 

An operating system on A Series systems. The MCP controls the operational 
environment of the system by performing job selection, memory management, peripheral 
management, virtual memory management, dynamic subroutine linkage, and logging of 
errors and system utilization. 

See master available table. 

See Master Control Program. 

Memory Disk 
A Unisys software feature that enables the use of memory as if it were a disk unit 
and provides file access with extremely high data-transfer rates relatively little access 
time. Memory disk is supported on all A Series systems that use the Master Control 
Program/Advanced Systems (MCP/AS) and on A 15 systems that use the Master Control 
Program (MCP). 

message level interface (MLI) 
The interface between the host system, the I/O subsystem, and the data communications 
subsystem. 

message level interface processor (MLIP) 
See I/O processor croP) and Entry and Medium Systems (EMS). 

mirror information table (MIT) 
A system status table that contains information about all mirrored sets on the system. 
The MIT is saved in the directory of the balt/load disk. After a halt/load, the MIT is 
read into memory from the directory of the halt/load disk. 

Mirrored Disk 
A software feature on Unisys A Series systems with I/O based on a data link 
processor (DLP) that enables from two to four disks to be maintained as a mirrored 
set; that is, as exact copies of each other. The Mirrored Disk feature increases system 
availability and data integrity, decreases the possibility of data loss due to equipment or 
media malfunction, and can improve I/O throughput on disk subsystems that experience 
a high ratio of reads versus writes. 

Glossary-l 0 8600 0668-000 



Glossary 

MIT 
See mirror information table. 

MLI 
See message level interface. 

MLIP 
See message level interface processor. 

multidisk family 

N 

A family that consists of more than one disk. The system treats the family as a single 
entity. 

native-mode disk 
The type of disk directory used on most A Series systems. The other type is interchange 
mode. When this guide refers to the term disk, it is referring to native-mode disks 
unless otherwise noted. 

nonremovable disk 
A disk that cannot be removed from the disk drive on which it is mounted. 

nonresident file 

o 

A file stored on a backup tape or a backup copy of a file that is stored on a different disk 
family from that on which the primary copy of the file is stored. This term does not 
always pertain to the RESIDENT file attribute. 

object code "file 

ODT 

oftline 

online 

A file produced by a compiler when a program is compiled successfully. The file contains 
instructions in machine-executable object code. 

See operator display terminal. 

Pertaining to the state of being not accessible by the operating system. 

Pertaining to the state of being accessible by the operating system. 

operator display terminal (ODT) 
A system control terminal (SeT) configured for direct communications with the 
operating system. The ODT is used primarily by operations personnel for entering 
commands that control and direct the system" and its resources. 

8600 0668-000 Glossary-II 



Glossary 

outstanding write list (OWL) 

OWL 

p 

PA 

A table used by a disk subsystem that uses the mirrored disk feature. The table is used 
to assure that data written to one disk in a mirrored set is also written to the remaining 
disks in the set. 

See outstanding write list. 

See peripheral association. 

pack (PK) 
(1) A random-access data storage device consisting of one or more circular platters that 
contain information recorded in concentric circular paths called tracks. Data on a pack 
are accessed by movable read/write heads. Some packs are removable. (2) Synonym for 
disk pack, disk. 

pack access structure table (PAST) 

PAST 

A table used by the system to locate disk families. It contains pointers into the file access 
structure table (FAST) that indicate where the entries for the files of a family are stored. 

See pack access structure table. 

peripheral association (PA) 
A scheme used by operators to cause the job output submitted through a specified 
peripheral device to be directed to another specified unit. 

peripheral device 
A hardware device used for input, output, or file storage .. Examples are magnetic tape 
drives, printers, disk drives, and operator display terminals (ODTs). In this guide, the 
term peripheral device refers to disk drives. 

peripheral test driver (PTD) 
A module of the Master Control Program (MCP) that executes maintenance tests for 
peripheral devices. 

permanent disk file 
See permanent file. 

permanent :file 

PK 

A disk file that is closed so that its header is placed in the system directory of the family 
on which the file is stored; the file can be referenced later by its title. 

See pack. 

Glossary-12 8600 0668-000 



Glossary 

presence-bit interrupt 

PTD 

R 

An interrupt that notifies the Master Control Program (MCP) that an array or object 
code file segment is needed that is not in main memory. The system allocates space 
for that array or object code file segment. If an array is needed, the system creates a 
new array or reads an existing array in from the overlay file. When an object code file 
segment is needed, the system reads it into main memory from disk. 

See peripheral test driver. 

read/write head 

rebuild 

The component of the disk drive that physically transfers data to and from the disk. 

In the disk subsystem, a concept that refers to either of the following: a family rebuild, 
in which the system constructs the file access structure table (FAST) entry for a family 
by reading its system directory; or a catalog rebuild (on a cataloging system) in which 
the system updates the family access structure table (FAST) with information about 
cataloged files. 

removable disk 
A disk that can be removed from the drive on which it is mounted. 

resident file 
The primary copy of the file that is stored on a disk, regardless of whether or not the 
diskis online. Backup copies of files stored on another disk family are not considered 
resident. This term does not always pertain to the RESIDENT file a~tribute. 

resource management module (RMM) . 

row 

RSVP 

A hardware module that interfaces with the I/O subsystem and schedules tasks on the 
E-mode processor (EMP) by way of a message protocol. 

See resource management module. 

The amount of contiguous disk, space that is allocated at one time to a disk file as it is 
being created or expanded. The Master Control Program (MCP) uses the term row in 
its processing. See also area 

A message issued by the system when it requires information about an operation; the 
system waits for a reply before proceeding. 

8600 0668-000 Glossary-13 



Glossary 

s 
scratch tape 

sector 

seek 

segment 

A labeled magnetic tape (MT) whose label indicates that there are no files on the tape. 
Old data might remain on the tape, but this old data cannot be read unless the tape is 
read as an unlabeled tape. The old data present on a scratch tape is written over when 
new data is written to the tape. 

A subdivision of a track on a disk. A sector is the minimum addressable area on a disk 
pack. Unisys A Series system sectors are 30 words, or 180 bytes, long. Synonym. for 
segment. 

The movement of the read/write heads of a disk drive to the specified track of the disk. 

A subdivision of a track on a disk. A segment is the minimum addressable area on a disk 
pack. Unisys A Series system segments are 30 words, or 180 bytes, long. Synonym for 
sector. 

serial number 
. The 6-character field an installation assigns to a disk or magnetic tape to uniquely 
identify it. The serial number is stored on the label of the disk or tape. 

source file 
(1) A file in which a source program is stored. (2) A file containing instructions written in 
a programming language. 

source host 
In a file copy process, the host system from which files are being copied. 

standby halt/load family 
A disk family that contains a Master Control Program (MCP) object code file and 
is in the standby halt/load family list. When system state tables such as the mirror 
information table (MIT) are changed by the system, the MCP also updates these tables 
on all standby halt/load families. A disk can be made into a standby halt/load unit by 
using the clause + STANDBY with the CM (Change MCP) system command. 

system control terminal (SCT) 
A terminal used to enter information. An SCT can be used three ways: as an operator 
display terminal (ODT) to interface with the operating system, as a maintenance display 
terminal (MDT) to interface with the maintenance subsystem, or as a remote display 
terminal (RDT) to interface with remote support. The windows providing these uses are 
available once the automatic initialization sequence has finished. 

system directory 
. (1) A special disk file on each disk family that the system uses to locate files on that 

family. The system directory, also referred to as the flat directory, contains a disk file 
header for each permanent file in the family. (2) The logical directory for nonusercoded 
files. 

Glossary-14 8600 0668-000 



Glossary 

system file 
A file that is stored on a disk and contains system software, such as the Master Control 
Program (MCP), system directories, and the access structure. 

SYSTEM/ACCESS 
The name of the file on noncataloging systems that contains the access structure. 

SYSTEM/CATALOG 

T 

The name of the file on cataloging systems that contains the access structure and the 
catalog. 

temporary disk file 
See temporary file. 

temporary file 
A file that does not need to be saved. When a temporary disk file is closed, its disk space 
is returned to the system.. The header of a temporary file is not stored in the system 
directory. 

timestamp 

track 

u 
UCF 

unit 

An encoded, 48-bit numerical value for the time and date. Various timestamps are 
maintained by the system for each disk file. Timestamps note the time and date a file 
was created, last altered, and last accessed. 

A circular path on the surface of a disk used to store data. 

See User Communication Form. 

A peripheral device such as a disk drive or a tape drive. 

unit number 
A number assigned by an installation to a peripheral device, such as a disk drive, and 
used to identify the device. The unit number commonly appears in conjunction with an 
acronym. indicating the type of unit, which provides a unique identifier for a particular 
peripheral. 

unvolumed disk 
A disk that has no matching entry in the volume library. 

unvolumed family 
A family disk that has no matching entry in the volume library. 

8600 0668--000 Glossary-I 5 



Glossary 

USECATDEFAULT 
The system option that, when enabled with the OP (Options) system command, assigns 
TRUE as the default value of the USE CATALOG file attribute. 

User Communication Form (UCF) 

v 
VAST 

A form used by Unisys customers to report problems and express comments about 
Unisys products to support organizations. 

See volume access structure table. 

VERSION 

volume 

A file attribute that can be used with the CYCLE file attribute to distinguish the 
generations of a file. 

The medium of a mass storage device such as a disk, disk pack, or tape reel. The term 
volume is not restricted to the volume library on a cataloging system or the volume 
directory on a system with tape volume security. For example, on the BTOS family 
of workstations, the hard disk is a volume, and each floppy disk is a volume. When a 
volume is initialized, it is assigned a volume name and an optional password. 

volume access structure table (VAST) 
A section of the catalog file on cataloging systems that the system uses to access the 
volume library. 

volume directory 
A section of the catalog that tracks the status of tapes on a system that uses the tape 
security subsystem. 

volume library 
A section of the catalog that keeps track of all tapes and volumed disks used on a 
cataloging system. 

volumed disk 
A disk that has been entered into the volume library with the VOLUME ADD Work 
Flow Language (WFL) statement so that the disk can be used to store cataloged files on 
a cataloging system. 

volumed family 
See volumed disk. 

w 
WFL 

See Work Flow Language. 

Glossary-16 8600 0668-000 



Glossary 

Work Flow Language (WFL) 
A Unisys language used for constructingjobs that compile and run programs on A Series 
systems. WFL includes variables, expressions, and flow-of-control statements that offer 
the programmer a wide range of capabilities with regard to task control. 

8600 0668-000 Glossary-17 



Glossa ry-18 8600 0668-000 



Bibliography 

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys Corporation. 

A Series DMSII Utilities Operations Guide (form 8600 0759). Unisys Corporation. 

A Series File Attributes Programming Reference Manual (form 8600 0064). Unisys 
Corporation. Formerly A Series I/O Subsystem Programming Reference Manual . 

A Series GETSTATUS/SETSTATUS Programming Reference Manual (form 
8600 0346). U nisys Corporation. 

A Series I/O Subsystem Programming Guide (form 86000056). Unisys Corporation. 
Formerly I/O Subsystem Programming Reference Manual . 

A Series Security Administration Guide (form 8600 0973). Unisys Corporation. 

A Series System Commands Operations Reference Manual (form 8600 0395). Unisys 
Corporation. 

A Series System Configuration Guide (form 8600 0445). Unisys Corporation. 

A Series System Messages Support Reference Manual (form 8600 0429). Unisys 
Corporation. 

A Series System Operations Guide (form 8600 0387). Unisys Corporation. 

A Series System Software Support Reference Manual (form 86000478). Unisys 
Corporation. 

A Series System Software Utilities Operations Reference Manual (form 8600 0460). 
. Unisys Corporation. 

A Series Task Attributes Programming Reference Manual (form 8600 0502). Unisys 
Corporation. Formerly A Series Work Flow Administration and Programming 
Guide. 

A Series Task Management Programming Guide (form 8600 0494). Unisys Corporation. 
Formerly A Series Work Flow Administration and Programming Guide. 

A Series Work Flow Language (WFL) Programming Reference Manual (form 
86001047). Unisys Corporation. 

8600 0668-000 Bibliography-l 



Bibliography-2 8600 0668-000 



Index 

A 

AAST, (See archive access structure table) 
access structure, 1-12 
accessing disk files, 1-12 
AD (Access Duplicate) system command, 8-4 
ADD & CATALOG statement, 5-11 
algorithm 

restrictions on rollout file selection, 4-25 
used by the selector procedure, 4-24 
used to determine DRC rollout 

requirenaents, 4-15 
ALL FILES option 

reconanaended usage, 4-15 
ALL USERS option 

specifying in ARCIITVE ROLLOUT, 4-13 
allocated disk file areas, moving, 2-7 
alternate haltlload families, 8-8 
alternate haltlload unit, 8-5 
ARCDUP systena command, 8-3 
archive access structure table, 1-16 
ARCHIVE backup statements 

comparison of differential and incremental, 
4-7 

descriptions of functions, 4-5 
discussion of ARCIITVE DIFFERENTIAL, 

4-5 
discussion of ARCIITVE FULL, 4-5 
discussion of ARCHIVE INCREMENTAL, 

4-5 
effect on cataloging installations, 4-6 
examples of, 4-6 

archive backup tape 
after archive operations, 4-17 
creating, 4-6 

ARCHIVE commands, (See ARCHIVE 
statenaents) 

ARCHIVE DIFFERENTIAL statement 
example of, 4-6 

archive directory, 1-16, 7-4 
and rolling out files, 4-12 
conditions when unavailable, 12-11 
duplicating, 8-3 

8600 0668-000 

effect of archive processes, 4-3 
effect of merging files, 4-9 
effect of restore and restoreadd processes, 

4-11 
effect of selector procedure changes, 4-21 
general definition of, 4-1 
purging records from, 4-2, 4-10 
recovery procedure for, 12-12 
recovery procedures, 12-11 
reviewing file information, 4-18 

ARCIDVE FULL statement 
example of, 4-6 

ARCHIVE INCREMENTAL statement 
example of, 4-7 

archive information, displaying, 4-18 
ARCIDVE MERGE statement 

allowed input to, 4-8 
description of function, 4-8 
examples of, 4-9 

archive operations, 4-1 
backing up disk files, 4-5 
creating catalog backup records, 4-6 
determining the rollout goal, 4-24 
discussion of four-way search, 4-3 
errors during, 4-17 
file selection for rollout, 4-13 
files exempt from rollout, 4-25 
issuing statements for, 4-4 
merging archived files, 4-8 

loading tapes, 4-8 
presence of disk file headers, 4-20 
purging archive directory records, 4-10 
responding to NO FILE, 4-8 
restoring files to disk, 4-11 
rollout, 4-12 

factors affecting, 4-13 
specifying percentage values for, 4-16 

selection of tapes through CODES, 4-22 
stored in the MEM array parameter, 4-23 

Index-l 



Index 

using a modified support library, 4-19 
using SECTORS with ARCHIVE 

ROLLOUT, 4-14 
verification phase and VERIFY, 4-17 
when older files are merged, 4-9 
when older files are restored, 4-11 
& options, 4-17 

archive procedures 
effects of selector procedure results, 4-23 

archive process 
recovering damaged or lost records, 12-11 

ARCHIVE PURGE statement 
description offunction, 4-10 
examples of, 4-10 

archive rebuilds, 1-17 
archive record 

ARCREC parameter values, 4-22 
description of layout, A-I 
displaying, A-I 
displaying with PD and FILEDATA, 6-3 
effect of & DSONERROR option, 4-17 
example of layout, A-I 
number of copies maintained, 4-9 
procedure for recovering, 12-12 
purging from the directory, 4-10 
recovering lost or damaged, 12-11 
removal and VERIFY, 4-17 
reviewing file information, 4-18 
word allocation, A-5 

ARCIDVE RESTORE statement 
description offunction, 4-11 
examples of, 4-11 

ARCIDVE RESTOREADD statement 
description of function, 4-11 
examples of, 4-11 

ARCIDVE ROLLOUT statement 
description of function, 4-12 
example of SECTORS option, 4-14 
example of the DRC option, 4-16 
factors in selecting SECTORS or DRC, 

4-14 
factors influencing file selection, 4-13 
formula for DRC rollouts, 4-15 
requirement of disk file headers, 4-20 
specifying ALL USERS, 4-13 
specifying more sectors than are in use, 

4-14 
ARCIDVE statements 

summary of, 4-4 
using library equation in, 4-19 

archive subsystem, 4-1 
automatically reloading files, 4-2 

Index-2 

availability of, 6-1 
compared to cataloging, 6-1 
components of, 4-1 
discussion of the selector procedure, 4-21 
explanation of the support library, 4-2 
fil~ backup options, 4-5 
files used by, 4-3 
introduction to, 4-1 
removing disk files,· 4-2 
statements, 4-4 

archive support library, (See selector 
procedure) 

code file and symbolic, 4-19 
custom tailored 

effect on file selection, 4-9 
description of parameters, 4-21 
discussion of modification, 4-19 
file selection criteria, 4-20 
general definition of, 4-2 
restoring older files, 4-11 
selector procedure algorithms, 4-24 
selector procedure and parameter values, 

4-21 
use of the SFN parameter, 4-22 

archived file 
effect of archive records on, 4-3 
reloading without AUTORESTORE, 4-2 

ARCHIVESELECTOR procedure, (See 
selector procedure) 

archiving files 
backup tapes for disk families, 4-6 
effect on the archive directory, 4-6 
function of the support library, 4-5 
use of task variables, 4-17 
with ARCHIVE backup statements, 4-5 

ARCREC array parameter 
and CODES, 4-22 

ARCREC parameter 
presence of archive records, 4-22 

area, 1-2 
AREALENGTH file attribute, 1-7, 1-8 
AREAS file attribute, 1-7, 1-8 
attributes 

F AMIL YLIMIT and rollout, 4-16 
file, 1-7 
OTHERF AMIL YLIMIT and rollout, 4-16 

AUTORESTORE feature 
activating, 4-2 
and NO FILE conditions, 6-3 
conditions for use, 4-2 
description of, 4-2 
effect of archive records on, 4-10 

8600 0668-000 



not enabled 
loading missing files, 4-2 

available disk space, 1-18 

B 

backing up files, (See archive operations) 
backup copies 

making on cataloging system, 5-11 
making on noncataloging system, 8-1 

backup halt/load families, 8-8 
backup record 

creating during archive operations, 4-6 
backup tape 

cataloging system 
purging,5-14 

for resident and nonresident files, 4-9 
selection for archive operations, 4-22 
selector procedure and bkno, 4-23 
system assigned name for, 4-6 
system assigned names, 4-12 

bad sectors, isolating, 12-2 
base pack, 1-5 

creating, 2-2 
. replacing on cataloging system, 5-16 
replacing on noncataloging system, 12-2 

bkno result, meaning of, 4-23 
BLOCKSIZE file attribute, 1-7, 1-8 
boot unit, 7-1 

c 
candidate files and archive selection, 4-20 
catalog 

creating and using backup copies, 5-14 
designating a new family, 5-16 
duplication, 8-4 
entering files into, 5-11 
removing entries from, 5-13 
replacing the current, 5-15 

CATALOG ADD statement, 5-11 
CATALOG DELETE statement, 5-13 
CATALOG PURGE statement, 5-13 
cataloging 

creating backup records with ARCHIVE, 
4-6 

CATALOGING option, 5-1 
cataloging system 

backup copies, making, 5-11 

8600 0668-000 

Index 

backuptapes,purging,5-14 
compared to archiving subsystem, 6-1 
components, 5-1 
directory duplication, 8-4 
discussion of volumed media, 6-3 
file generation, 5-2 
files,accessing,5-12 
functions, 5-1 
impact on system performance, 5-10 
keeping track of file generations, 5-3 
levels, 5-3 
making backup copies of a cataloged file, 

.5-11 
operating, 5-11 
rebuilding,5-14 
setting up for the first time, 5-10 
volume directory handling, 3-2 
volume library handling, 3-2 

CATALOGLEVELSET,5-3 
CATDEFAULT option, 5-11 
checkerboarding, 2-9 
CM (Change MCP) system command 

for creation of alternate halt/load family, 
8-9 

for MCP code file allocation, 7-1 
MCP code file duplication, 8-5 

code file 
file name for archive file selection, 4-2 
for the archive support library, 4-19 
requirements for system, 7-2 

CODES 
array parameter 

selection of backup tapes, 4-22 
parameter 

description of function, 4-21 
comparing archive and cataloging functions, 

6-1 
comparing archiving and cataloging 

NO FILE conditions, 6-3 
volume library facility, 6-3 

consolidating disk space, 2-9 
continuation pack, 1-5 

creating, 2-3 
replacing, 12-3 

COPIES file attribute, 8-1 
COpy & BACKUP statement, 5-11· 
COpy & CATALOG statement, 5-11 
CREATIONDATE file attribute, 1-8 
CREATIONTIME file attribute, 1-8 
CYCLE file attribute, 1-7 

on cataloging systems, 5-2 
on noncataloging systems, 1-9 

Index-3 



Index 

cylinder, 1-1 

D 

damaged or destroyed disk 
on cataloging system, 5-16 
on noncataloging system, 12-2 

DD (Directory Duplicate) system command, 
8-1 

defective sectors, isolating, 12-2 
DEPENDENTSPECS file attribute, 1-9 
DFHINFO 

array parameter 
description of function, 4-22 

defined in the CODES parameter, 4-22 
directory 

archive, 1-16,7-4 
duplicating, 8-3 

catalog 
duplicating, 8-4 

complementing, 1-18 
duplication, monitoring, 8-6 
error recovery, 12-6 
SYSTEM/ACCESS 

requireDlents, 7-3 
SYSTEM/CATALOG 

requireDlents, 7-3 
disk,. 1:-1 

checkerboardrnng, 2-9 
consolidating space, 2-9 
diagram of physical structure, 1-3 
family, 1-5 

building an accurate list of files on, 
12-11 

disk space limits for, 4-15 
location of the archive directory, 4-1 

initializing, 2-1 
label, 1-5 
moving data after I/O errors, 12-5 
moving to another disk drive after I/O 

errors, 12-4 
name, 2-2 
offiine, 2-4 
online,2-4 
reconfiguring, 2-1 
replacing on cataloging system, 5-16 
replacing on noncataloging system, 12-2 
serial number, 2-3 
types used on A Series systems, 2-2 

disk access structure file, 7-3 
disk errors 

Index-4 

updating the FAST, 12-9 
disk file, 1-7 

archived, 4-1 
merging on archive backup tapes, 4-8 
selection through the CODES array, 

4-22 
creating archive copies of, 4-5 
header, 1-3, 7-11 

archive file selection, 4-20 
defined in the CODES parameter, 4-22 
resident status, 4-3 

recovering through ARCmvE RESTORE, 
4-11 

removal and effect on archive records, 4-2 
resident 

use of ARCHIVE PURGE, 4-10 
disk handling 

volume directory, 3-6 
volume library, 3-2, 3-6 

disk pack, 1-1 
nonremovable, 1-1 
removable, 1-1 

disk space 
available, 1-18 

sectors in rollout operation, 4-14 
DRC sector selection, 4-15 
limits 

use of the DRC option, 4-15 
making efficient use of, 4-12 
setting limits on, 4-16 

disk subsystem 
components, 1-1 
general concepts, 1-1 
types of problems, 12-1 

displaying an archive record, (See archive 
record) 

DL catalog family 
presence of archive directories, 4-1 

DRCoption 
description of sector selection, 4-15 
formula for rolling out files, 4-15 
in ARCIDVE ROLLOUT operations, 4-12 
selection of files for rollout, 4-13 
use ofF AMILYLIMIT and 

OTHERF AMIL YLIMIT, 4-16 
DSONERROR option, (See & options) 
duplicate files in family rebuild, 12-11 
DUPLICATED file attribute, 8-1 
duplication 

archive directories, 8-3 
catalog directory, 8-4 
comparison of commands, 8-7 

8600 0668-000 



E 

dUrectories,~ordtorDlg, ~ 

flat directory, 8-1 
MCP code file, 8-5 

errors 

F 

possible responses for archive processes, 
4-17 

recovery, 12-1 

family, 1-5 
base pack, 1-5 
index number, 1-7 
~e,2-2 

specification state~ent, 7-6 
substitution, 7-6 

family header version 
changing, 7-11 
concept, 7-12 

<f~yindexnumber>, 1-7, 1-12 
<f~yname>, 1-5 
family rebuild, 1-17 

construction of the F AS~ 12-9 
discussion of the process, 12-9 
errors during, 12-11 
listing files for, 12-11 
reducing, 1-17 

f~y substitution 
archive file searches, 4-3 
archiving and cataloging file searches, 6-2 

F AMILYINDEX file attribute, 1-6 
F AMILYLIMIT attribute 

and DRC limits, 4-15 
liInits on rollout, 4-16 

F AMILYNAME file attribute, 1-7 
F AS~ (See file access structure . table) 
field values 

for the ARCREC parameter, 4-22 
for the CODES parameter, 4-21 
for the DFHINFO parameter, 4-22 

file 
archive processes, 4-1 
archived 

displaying info~tion on, 4-18 
re~ovingthroughrollout,4-12 

archiving, 4-1 

8600 0668-000 

code for archive selection, 4-2 
creating an archive backup, 4-5 
determining the newness of, 4-11 
disk 

creating an accurate list of, 12-11 
exempt from rollout selection, 4-25 
~u1tiple directory searches 

conditions controlling, 4-3 
conditions for te~ting, 4-4 

Index 

NO FILE message and AUTORESTORE, 
4-2 

recovering through ARCHIVE RESTORE, 
4-11 

reloading with AUTORESTORE, 4-2 
removing and then restoring, 4-11 
removing archived files, 4-2 
searches for archived files, 4-3 
size and rollout selection, 4-13 
symbolic for archive selection, 4-2 
title, 1-5 
use in archive operations, 4-3 

file access structure table, 1-12, 1-13 
diagram, 1-14 
disk errors, 12-9 
for family rebuilds, 12-9 

file allocation on a disk family, 1-6 
file attributes, 1-7 

AREALENGTH, 1-8 
AREAS,1-8 
assigning, 1-7 
BLOCKSIZE, 1-8 
COPIES, 8-1 
CREATIONDATE, 1-8 
CREATIONTIME, 1-8 
CYCLE on cataloging systems, 5-2 
CYCLE on noncataloging systems, 1-9 
DEPENDENTSPECS, 1-9 
DUPLICATED, 8-1 
FAMILYINDEX, 1-6 
FAMILYNAME, 1-7 
FILEKIND, 1-7 
FILENAME, 1-7 
FRAMESIZE, 1-7 
GENERATION, 5-3 
KIND,1-7 
MAXRECSIZE, 1-8 
NEWFILE, 1-7 
USECATALOG, 5-11 
VERSION on cataloging systems, 5-2 
VERsION on noncataloging systems, 1-9 

file calls 
function of the MEM parameter, 4-23 

Index-5 



Index 

file generations 
comparing archiving and cataloging, 6-1 
on cataloging systems, 5-2 

file management 
comparing archiving and cataloging, 6-1 

<file name>, 1-5 
file number 

defined in the CODES array, 4-21 
supplied to MEM, 4-24 

file searches 
effect of archive records on, 4-10 

file selection 
archive· 

order of occurrences, 4-20 
as determined by selector procedure 

results, 4-23 
effects of LAST ACCESS DATE and 

SAVEFACTOR, 4-24 
for archive rollout operations, 4-13 
rank ordering of files, 4-24 
restrictions on rollout file selection, 4-25 
selector procedure and returned results, 

4-23 
selector procedure parameters, 4-22 
support library criteria, 4-20 

FILE COpy utility, 8-1 
FILEDATA utility, 8-1 

displaying archive information, 4-18 
displaying archive records, A-I 

FILEKIND attribute 
effect on rollout operations, 4-13 

FILEKIND file attribute, 1-7 
FILENAME file attribute, 1-7 
files 

accessing, 1-12, 1-15 
allocation, 7-5 
cataloged 

accessing, 5-12 
definition, 1-7 
header, 1-3 
nonresident, 1-10, 5-1 
OPEN requests 

cataloging and archiving differences, 6-2 
permanent, 1-11 
resident, 1-10,5-1 
temporary, 1-11 

flat directory, 1-4 
duplication, 8-1 
name, 1-7 
relationship to file access structure table, 

1-13 
resident file status, 4-3 

Index-6 

four-way search 
description of, 4-3 

FR system command 
responding to errors, 4-17 

FRAMESIZE file attribute, 1-7 

G 

GENERATION file attribute, 5-3 
generations of files 

comparing archiving and cataloging, 6-1 
on noncataloging systems, 1-9 

GETSTATUS calls 
use in archive recovery procedures, 12-12 
use With archive information, 4-19 

guard file, protection from rollout operations, 
4-13 

H 

haltlload family 
alternate, 8-8 
duplicate MCP code file, 8-5 
standby, 8-8 
suggestions for assigning, 7-6 

haltlloag unit, 7-1 
alternate, 8-5 

head-per-track disk, 1-1 
header, 1-3 

disk file, 7-11 
distinguishing resident from nonresident 

files, 4-3 

initialize, verify, and relocate, 2-1 
interchange disk pack, 2-2 
intrinsics, (See system intrinsic 

requirements) 
invalid usercode 

use of ALL FILES in a rollout, 4-15 
IVR, (See initialize, verify, and relocate) 

J 

job file requirements, 7-2 
JOBDESC file requirements, 7-2 

8600 0668-000 



K 

KIND file attribute, 1-7 

L 

label, 1-5 
LAST, (See local access structure table) 
LASTACCESS attribute 

effect on rollout operations, 4-13 
libraries, '(See system library requirements) 
library 

equation 
in ARCHIVE statements, 4-19 

for archive support, 4-2 
maintenance for archive subsystem 

operations, 4-1 
support 

for the archive subsystem, 4-5 
line support processor files, 7-6 
LISTVOLUME, 3-2 
LOADER, 7-10 
local access structure table, 1-17 
log, (See SYSTEM/SUMLOG) 
LOGANAL~R, 12-8 
logical record, 1-8 
LSP files, (See line support processor files) 

M 

master available table, 2-1 
MAT, (See master available table) 
MAXRECSIZE file attribute, 1-8 
MCP code file 

duplication, 8-5 
MEM array parameter 

description of function, 4-23 
length ot; 4-23 
used to rank order files, 4-24 

memory disk 
commands used with, 11-4 
creation, 11-1 
data vulnerability, 11-1 
definition, 11-1 
establisbrnng, 11-1 
halt/load recovery, 11-2 
I/O handling, 11-3 
initialization, 11-2 
memory reconfiguration, 11-2 

8600 0668-000 

Index 

operational restrictions, 11-3 
merging archived files 

archive directory changes, 4-9 
discussion of ARCIITVE MERGE, 4-8 
loading tapes while, 4-8 
merging resident and nonresident files, 4-9 

MIRROR AUDIT command, 10-6 
mirror information table, 10-7 
mirrored disk 

alternate halt/load family, 10-7 
audit tables, 10-7 
automatic release, 10-7 
backup and audit features, 10-1 
benefits, 10-1 
bringing outdated packs online, 10-8 
bringing the disk online, 10-6 
changing halt/load units, 10-8 
deallocating mirrored copies, 10-7 
halt/loading with mirrored critical units, 

10-6 
halt/loading with mirrored noncritical 

units, 10-6 
I/O throughput, 10-1 
invalidated disk label, 10-7 
invalidated linkage between mirrors, 10-8 
mirror audit, 10-6 
out-of-date members, 10-7 
overview, 10-1 
partial mirrored sets, 10-6 
precautions, 10-8 
preparing a pack, 10-5 
prerequisites for use, 10-5 
recovery, 10-6 
standby halt/load family, 10-7 
transferring MCPs, 10-7 

missing file 
AUTORESTORE and NO FILE, 4-2 

MIT, (See mirror information table) 
modifYing archive records 

layout of archive records, A-1 
modifYing the archive support library, 4-19 

file selection, 4-24 
requirements, 4-21 

moving allocated disk file areas, 2-7 
multidisk family, 1-5 

creating, 2-3 
multiple directory searches 

conditions for executing, 4-3 

Index-7 



Index 

N 

native-mode disk, 2-2 
network support processor files, 7-6 
NEWFILE file attribute, 1-7 
NO FILE message 

and multiple directory searches, 4-4 
comparison of archiving and cataloging, 

6-3 
during archive merge operations, 4-8 
use of AUTORESTORE, 4-2 

noncataloging system 
backup files, making, 8-1 

nonremovable disk pack, 1-1 
nonresident file, 1-10,5-1 

archive record and restore operations, 
4-20 

archiving to tape, 4-9 
effect ofWFL statements on, 4-3 
general definition for archiving, 4-3 

NSP files, (See network support processor 
files) . 

o 
ODTcommand 

using the archive subsystem, 4-4 
offline disk, 2-4 
online disk, 2-4 
OPEN requests 

cataloging and archiving differences, 6-2 
ordering of files during archive file selection, 

4-24 
OTHERF AMILYLIMIT attribute 

and DRC limits, 4-15 
limits on rollout, 4-16 

outstanding write list, 10-7 
corruption of, 10-7 

overlay file requirements, 7-2 
OWL, (See outstanding write list) 

p 

pack access structure table, 1-12, 1-13 
parameters 

ARCREC and archive records, 4-22 
CODES array and its function, 4-21 
DFHINFO array and its function, 4-22 
MEM array and its function, 4-23 

Index-8 

SFN parameter and its function, 4-22 
used in archive file selection, 4-21 

PAST, (See pack access structure table) 
PER PK system command, 1-7 
permanent files, 1-11 

removing, 1-11 
platter, 1-1 
presence-bit interrupt, 7-1 
printer and punch backup files 

requirements, 7-3 
purging archive directory records, 4-10 
purging archive records, 4-2 

use of SETS TAT US calls, 4-19 
purging catalog backup tapes, 5-14 

R 

RC command, OWNER clause, 2-3 
read/write head, 1-1 
REAL results and the selector procedure, 

4-23 
rebuild process 

archive entries, 1-17 
cataloging system, 5-14 
FAST entries, 1-17 
responding to unreadable records, 12-11 

records 
removing archive records, 4-2 
unreadable in a family rebuild, 12-11 

recovery, 12-1 
damaged or destroyed disk, 12-2 
directory error, 12-6 
family rebuild error, 12-9 
isolating defective sectors, 12-2 
moving data to another disk, 12-5 
moving disk to another drive, 12-4 
of archive records or directories, 12-11 
of damaged archive records, 12-12 
of files through ARCHIVE RESTORE, 

4-11 
procedure for archive directories, 12-12 

reloading files 
automatically, 4-2 

removable disk pack, 1-1 
removing a resident disk file 

effect of ARCHIVE PURGE, 4-10 
removing archived files 

permanently, 4-2 
removing files 

through rollout operations, 4-12 
reports 

8600 0668-000 



of archive information, 4-19 
resident file, 1-10, 5-1 

archiving to tape, 4-9 
disk file headers and rollouts, 4-20 
effect of ARCHIVE PURGE on, 4-10 
general definition for archiving, 4-3 

restoring archived files 
effect of purging records, 4-10 
effect on the archive directory, 4-11 
presence of archive backup records, 4-20 
using ARCHIVE RESTORE, 4-11 

retrieving archive information, 4-18 
rolling out files 

copying or removing files, 4-25 
determining the rollout goal, 4-24 
differences between SECTORS and DRC 

options, 4-14 
effect on the archive directory, 4-12 
factors influencing selection, 4-13 
file exempt from rollout, 4-25 
how DRC operations rollout files, 4-15 
presence of disk file headers, 4-20 
specifying percentage values, 4-16 
use of ARCHIVE ROLLOUT, 4-12 
when ALL FILES is recommended, 4-15 
when file selection is delayed, 4-20 

row, 1-2, (See also area) 
RY system command 

and archive processes, 12-11 

s 
SA VEFACTOR attribute 

effect on rollout operations, 4-13 
SCAN (Scan Disk or Pack Volume) system 

command,12-2 
searches for files 

use of * directory, 4-3 
sectors, 1-2 

availability and rollout operations, 4-14 
freeing a specified number, 4-14 
isolating defective, 12-2 

SECTORS option 
. in ARCHIVE ROLLOUT operations, 4-12 

specifying more sectors than are in use, 
4-14 

security, tape, 3-1 
segment, 1-2, (See also sectors) 
selector library, (See support library) 
selector procedure 

algorithms used by, 4-24 

8600 0668-000 

Index 

archive support library functions, 4-21 
declaration requirements, 4-21 
description of parameter values, 4-21 
discussion of returned results, 4-23 
file name pointer, 4-22 
file specification issues, 4-23 
parameters and resulting values, 4-21 
use of the ARCREC parameter, 4-22 

serial number, 2-3 
SETSTATUS calls 

use in archive recovery procedures, 12-12 
use with archive information, 4-19 

SFN parameter 
description of function, 4-22 

sort file requirements, 7-4 
SQUASH (Consolidate Disk Space) system 

command, 2-9 
standby haltlload families, 8-8 
storage array, (See MEM array parameter) 
support library 

archive 
using a modified library, 4-19 

archive subsystem support, 4-2 
for the archive subsystem, 4-5 

symbolic file 
for the archive support library, 4-19 
name for archive files, 4-2 

system code file requirements, 7-2 
system directory, (See flat directory) 
system files 

protection from rollout operations, 4-13 
requirements, 7-1 

system intrinsic requirements, 7-2 
system library requirements, 7-2 
system option 

for AUTORESTORE processes, 4-2 
system startup, 7-10 
SYSTEM/ACCESS 

directory requirements, 7-3 
file, 1-12 

SYSTEM/ARCHIVESUPPORT file 
file selection, 4-5 

SYSTEM/CATALOG, 5-1 
accessing disk files, 1-12 
directory requirements, 7-3 

SYSTEM/LOADER, 7-10 
SYSTEM/SUMLOG 

requirements, 7-3 
use in correcting I/O errors, 12-8 

SYSTEM/TRAINTABLES, 7-6 
SYSTEM/USERDATAFILE requirements, 

7-4 

Index-9 



Index 

SYSTEMDIRECTORY, . (See fiat directory) 

T 

tape handling 
volume directory, 3-3 
volume library, 3-3 

tape name 
system assigned by ARCHIVE ROLLOUT, 

4-12 
tape security subsystem, 3-1 

volumed tapes, handling, 3-3 
task status 

monitoring with task variables, 4-17 
task variable 

use with archive operations, 4-17 
temporary files, 1-11 
track, 1-1 
TRAINTABLES, (See 

SYSTEMtrRAINTABLES) 

u 
unavailable archive directory, (See archive 

directory) 
unreadable record 

during a family rebuild, 12-11 
USECATALOG file attribute, 5-11 
USECATDEFAULT, 5-11 
USERDATAFILE 

v 

disk space limits and the DRC option, 4-15 
DRC limits and rollout operations, 4-12 
effects of rollout operations, 4-14 
requirements, 7-4 

VAST, (See volume access structure table) 
VERIFY option, (See & options) 
VERSION file attribute, 1-7 

on cataloging systems, 5-2 
on noncataloging systems, 1-9 

volume access structure table, 3-2 
volume directory 

file selection for an archive merge, 4-9 
handling disks and tapes, 3-2 

volume library, 3-2 
handling of disks and tapes, 3-2 

Index-IO 

volumed disks 
handling,3-6 

volumed media, comparing archiving and 
cataloging, 6-3 

w 
WFL statements 

description of ARCHIVE 
DIFFERENTIAL, 4-5 

description of ARCHIVE FULL, 4-5 
description of ARCHIVE 

INCREMENTAL, 4-5 
description of ARCHIVE PURGE, 4-10 
description of ARCHIVE RESTORE, 4-11 
description of ARCHIVE RESTOREADD, 

4-11 
description of ARCHIVE ROLLOUT, 4-12 
discussion of ARCHIVE MERGE, 4-8 
effects on nonresident files, 4-3 
for the archive subsystem, 4-4 
reference to ARCHIVE syntax, 4-5 

word allocation 
usage in archive records, A-5 

word values 
for theARCREC parameter, 4-22 
for the CODES parameter, 4-21 
for the DFHINFO parameter, 4-22 

* directory 
effect in archive file searches, 4-3 

& options 
COMPARE with archive operations, 4-17 
DSONERROR with archive operations, 

4-17 
examples of use in archive statements, 

4-17 
VERIFY with archive operations, 4-17 

8600 0668-000 



• UNISYS Help Us To Help You 
Publication Trtle 

Form Number 

Unisys Corporation is interested in your comments and suggestions reguarding this manual. We win use 
them to improve the quality of your Product Information. Please check type of suggestion: 

o Addition o Deletion o Revision o Error 

Comments: 

Name Telephone number 
r· ) 

Trtle Company 

Address 

City State Zip code 



X aU!I pauop ~uole :mO 

r---------~----------------
ade! aldelS lON 00 aseald adel 

aJaH PIO;! 

~II --------------rr-----~::--
IF MAILED 

I ~M 
I UNITED STATES 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

BUSINESS REPLY MAIL. 
FIRST CLASS MAIL PERMIT NO. 817 DETROIT, MI 

POSTAGE WILL BE PAID BY ADDRESSEE 

UNISYS CORPORATION 
ATTN: PUBLICATIONS 
25725 JERONIMO ROAD 
MISSION VIEJO, CA 92691-9826 

11.111111.1.11 •• 1.1 ..... 111.1111111'111.1.11 •• 1 •• 1.1 





II~IIIIIIIIIIIIIIIIIIII~IIIIIII~I ~IIII~ mil 11111 111111111 II 
86000668-000 


